Priv.-Doz. Dr. Mar­tin He­xa­mer

Privat-Dozent

Medizintechnik

Adresse:
Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Medizintechnik
Universitätsstraße 150
D-44801 Bochum

Raum:
ID 04/253

Telefon:
(+49)(0)234 / 32 - 24922

Fax:
(+49)(0)234 / 32 - 14872

E-Mail:
martin.hexamer(at)rub.de

Lebenslauf

Martin Hexamer studied electrical engineering at the Ruhr University Bochum (RUB), specialising in control engineering, measurement technology and data processing. After successfully graduating (Dipl.-Ing.), he worked as a research assistant at the Institute of Physiology (Department of Biocybernetics) of the RUB Faculty of Medicine. As part of his doctorate, he worked on the external regulation of body temperature in extreme situations.

After successfully completing his doctorate (Dr. rer. nat.), he moved to the newly established Department of Biomedical Engineering at the RUB Faculty of Medicine. Together with the former head of the department, he established several research areas. Martin himself focused on the fields of rate-adaptive pacemaker therapy and the automation of the heart-lung machine. He obtained funding from the German Research Foundation (DFG) for both research areas. His habilitation deals with the system-theoretical analysis of rate-adaptive pacemakers. Since 2010, he has been a member of the Chair of Medical Technology at the Faculty of Electrical Engineering and Information Technology (RUB). There he developed a pump drive and algorithms for blood gas control for a novel miniaturised heart-lung machine as part of two industry-related projects.

Martin is a member of the German Association of Electrical Engineers (VDE) and has been a member of the Ethics Committee of the RUB Faculty of medicine for more than twenty years. He is a regular reviewer for several international journals, the German Research Foundation (DFG) and the Bavarian Research Foundation.

2018

[1]
A. Aghababaei, A. Kashefi, und M. Hexamer, „A drive mechanism for a blood pump integrated in an oxygenator“, Current directions in biomedical engineering, Bd. 4, Nr. 1, S. 45–48, 2018, doi: 10.1515/cdbme-2018-0012.

2015

[1]
A. Aghababaei und M. Hexamer, „A new approach to generate arbitrary pulsatile pressure wave forms in mechanical circulatory support systems“, in 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015), Mailand, 2015, S. 3299–3302. doi: 10.1109/embc.2015.7319097.
[2]
A. Aghababaei und M. Hexamer, „Grey-box modeling of ex-vivo isolated perfused kidney“, in IFAC-PapersOnLine, Berlin, 2015, Bd. 48, 20. doi: 10.1016/j.ifacol.2015.10.134.

2014

[1]
M. Hexamer, „Herz-Lungen-Maschine und extrakorporale Membranoxygenierung“, in Biomedizinische Technik - automatisierte Therapiesysteme, Bd. 9, J. Werner, Hrsg. Berlin: De Gruyter, 2014, S. 215–239.
[2]
M. Hexamer, „Elektrotherapie des Herzens mittels Herzschrittmacher“, in Biomedizinische Technik - automatisierte Therapiesysteme, Bd. 9, J. Werner, Hrsg. Berlin: De Gruyter, 2014, S. 63–103.

2012

[1]
B. J. E. Misgeld, S. Leonhardt, und M. Hexamer, „Robust multivariable blood-gas control for extracorporeal circulation with heart-lung machine support“, in Automatisierungstechnische Verfahren für die Medizin, Aachen, 2012, Bd. 286, S. 3–4.
[2]
B. Misgeld, S. Leonhardt, und M. Hexamer, „Multivariable control design for artificial blood-gas exchange with heart-lung machine support“, in 2012 IEEE International Conference on Control Applications (CCA 2012), Dubrovnik, 2012, Publiziert. doi: 10.1109/cca.2012.6402380.

2010

[1]
M. Hexamer und J. Werner, „Konzeption und Test von Steueralgorithmen für implantierbare Herzschrittmacher“, in Automation 2010, Baden-Baden, 2010, Bd. 2092, S. 309–312.
[2]
B. J. E. Misgeld, J. Werner, und M. Hexamer, „Simultaneous automatic control of oxygen and carbon dioxide blood gases during cardiopulmonary bypass“, Artificial organs, Bd. 34, Nr. 6, S. 503–512, 2010, doi: 10.1111/j.1525-1594.2009.00890.x.

2009

[1]
S. Leonhardt, M. Hexamer, und O. Simanski, „Smart life support: modellbasierte Entwicklung und Automatisierung von lebensunterstützenden Systemen“, Biomedical engineering, Bd. 54, Nr. 5, S. 229–231, 2009, doi: 10.1515/bmt.2009.032.

2008

[1]
B. J. E. Misgeld, J. Werner, und M. Hexamer, „Nonlinear robust blood-gas control by state linearisation for the cardiopulmonary bypass“, Control engineering practice, Bd. 16, Nr. 7, S. 884–895, 2008, doi: 10.1016/j.conengprac.2007.10.006.

2006

[1]
S. Müller, M. Hexamer, und J. Werner, „A fiber optic sensor system for control of rate-adaptive cardiac pacemakers and implantable defibrillators“, Biomedical engineering, Bd. 51, Nr. 5–6, S. 331–336, 2006, doi: 10.1515/bmt.2006.066.
[2]
M. Hexamer, M. Nagel, und J. Werner, „Rate-responsive pacing based on the atrio-ventricular conduction time: comparison of different algorithms“, Medical engineering & physics, Bd. 28, Nr. 9, S. 894–904, 2006, doi: 10.1016/j.medengphy.2005.11.012.
[3]
B. J. E. Misgeld, J. Werner, und M. Hexamer, „Strategies for haemodynamic control of extracorporeal circulation“, in 6th IFAC Symposium on Modeling and Control in Biomedical Systems 2006, Reims, 2006, Bd. 39, S. 351–356. doi: 10.3182/20060920-3-fr-2912.00064.

2005

[1]
B. J. E. Misgeld, J. Werner, und M. Hexamer, „Robust and self-tuning blood flow control during extracorporeal circulation in the presence of system parameter uncertainties“, Medical & biological engineering & computing, Bd. 43, Nr. 5, S. 589–598, 2005, doi: 10.1007/bf02351032.
[2]
M. Hexamer, „Analyse und Synthese frequenzadaptiver Herzschrittmacher “, Automatisierungstechnik, Bd. 53, Nr. 9, S. 445–453, Sep. 2005, doi: 10.1524/auto.2005.53.9.445.
[3]
B. J. E. Misgeld und M. Hexamer, „Modellierung und Regelung des arteriellen Blutflusses während der extrakorporalen Zirkulation“, Automatisierungstechnik, Bd. 53, Nr. 9, S. 454–461, Sep. 2005, doi: 10.1524/auto.2005.53.9.454.

2004

[1]
M. Hexamer u. a., „Automatic control of the extra-corporal bypass: system analysis, modelling and evaluation of different control modes“, Biomedical engineering, Bd. 49, Nr. 11, S. 316–321, 2004, doi: 10.1515/bmt.2004.059.
[2]
H. J. Kaup, M. Hexamer, und J. Werner, „Morphological detection algorithms for the automatic implantable cardioverter/defibrillator (AICD): Morphologische Detektionsalgorithmen für den automatischen implantierbaren Kardioverter/Defibrillator (AICD)“, Biomedical engineering, Bd. 49, Nr. 11, S. 306–310, 2004, doi: 10.1515/bmt.2004.057.
[3]
A. Kloppe u. a., „Mechanical and optical characteristics of a new fiber optical system used for cardiac contraction measurement“, Medical engineering & physics, Bd. 26, Nr. 8, S. 687–694, 2004, doi: 10.1016/j.medengphy.2004.02.013.
[4]
M. Hexamer u. a., „Rate-responsive pacing using the atrio-ventricular conduction time: design and test of a new algorithm“, Medical & biological engineering & computing, Bd. 42, Nr. 5, S. 688–697, 2004, doi: 10.1007/bf02347552.
[5]
A. Prenger-Berninghoff, M. Hexamer, U. Schütt, H. Knobl, R. Körfer, und J. Werner, „Automatic control of isolated organ perfusion“, Biomedical engineering, Bd. 49, Nr. 11, S. 322–326, 2004.
[6]
M. Hexamer, M. Meine, C. Kloppe, A. Kloppe, A. Mügge, und J. Werner, „The dromotropic pacemaker: system analysis and design considerations“, Biomedical engineering, Bd. 49, Nr. 11, S. 300–305, 2004, doi: 10.1515/bmt.2004.056.
[7]
C. Welp, J. Werner, D. Böhringer, und M. Hexamer, „Investigation of cardiac and cardio-therapeutical phenomena using a pulsatile circulatory model“, Biomedical engineering, Bd. 49, Nr. 11, S. 327–331, 2004, doi: 10.1515/bmt.2004.061.

2003

[1]
M. Hexamer und J. Werner, „A mathematical model for the gas transfer in an oxygenator“, in Modelling and control in biomedical systems (including biological systems), Melbourne, 2003, Bd. 36, S. 409–414. doi: 10.1016/s1474-6670(17)33538-3.
[2]
J. Werner, K. Hoeland, A. Kloppe, A. Prenger-Berninghoff, M. Hexamer, und S. Müller, „A new inotropic pacemaker system“, in Proceedings of the 15th IFAC world congress 2002, Barcelona, 2003, Bd. 35, S. 175–179. doi: 10.3182/20020721-6-es-1901.01338.
[3]
M. Hexamer, J. Weckmüller, M. Meine, A. Kloppe, A. Mügge, und J. Werner, „A new pacemaker concept for rate-responsive pacing based on the atrio-ventricular conduction time“, in Proceedings of the 15th IFAC world congress 2002, Barcelona, 2003, Bd. 35, S. 181–186. doi: 10.3182/20020721-6-es-1901.01339.

2002

[1]
M. Hexamer, M. Meine, A. Kloppe, und J. Werner, „Rate-responsive pacing based on the atrio-ventricular conduction time“, IEEE transactions on biomedical engineering / Institute of Electrical and Electronics Engineers, Bd. 49, Nr. 3, S. 185–195, 2002, doi: 10.1109/10.983452.
[2]
J. Werner, D. Böhringer, und M. Hexamer, „Simulation and prediction of cardiotherapeutical phenomena from a pulsatile model coupled to the Guyton circulatory model“, IEEE transactions on biomedical engineering / Institute of Electrical and Electronics Engineers, Bd. 49, Nr. 5, S. 430–439, 2002, doi: 10.1109/10.995681.
[3]
K. Hoeland, A. Kloppe, M. Hexamer, G. Nowack, und J. Werner, „New sensor based on fibre optics for measurement of heart movement“, Medical & biological engineering & computing, Bd. 40, Nr. 5, S. 571–575, 2002, doi: 10.1007/bf02345457.

2001

[1]
A. Kloppe u. a., „Veränderung der systolischen Zeitintervalle und der Druckanstiegsgeschwindigkeit durch die biventrikuläre Stimulation“, Herzschrittmachertherapie + Elektrophysiologie, Bd. 12, Nr. Suppl. 1, S. 79–80, 2001.

2000

[1]
T. C. Andres, M. Hexamer, und J. Werner, „Heat acclimation of humans: hot environment versus physical exercise“, Journal of thermal biology, Bd. 25, Nr. 1–2, S. 139–142, 2000, doi: 10.1016/s0306-4565(99)00091-1.
[2]
M. Meine, M. Achtelik, M. Hexamer, A. Kloppe, J. Werner, und H.-J. Trappe, „Assessment of the chronotropic response at the anaerobic threshold: an objective measure of chronotropic function“, Pacing and clinical electrophysiology, Bd. 23, Nr. 10, S. 1457–1467, 2000, doi: 10.1046/j.1460-9592.2000.01457.x.
[3]
J. Werner, M. Meine, K. Hoeland, M. Hexamer, und A. Kloppe, „Sensor and Controll Technology for Cardiac Pacing“, Transactions of the Institute of Measurement and Control, Bd. 22, Nr. 4, S. 289–302, 2000, doi: 10.1177/014233120002200402.
[4]
M. Meine, M. Achtelik, M. Hexamer, H.-J. Trappe, und J. Werner, „Untersuchungen zur Optimierung der atemminutenvolumen-gesteuerten Herzfrequenzadaption“, Zeitschrift für Kardiologie, Bd. 89, Nr. Supp. 6, S. VI/68, 2000.
[5]
M. Hexamer, M. Meine, und J. Werner, „A system-theoretical approach to closed-loop pacing of the human heart based on the atrio-ventricular conduction time“, in Modelling and control biomedical systems 2000 (including biological systems), Greifswald, 2000, 1. Aufl., Bd. 33, S. 187–191. doi: 10.1016/s1474-6670(17)35512-x.
[6]
D. Böhringer, M. Hexamer, M. Meine, und J. Werner, „Analysis of cardiological problems by coupling two cardiovascular models“, in Modelling and control biomedical systems 2000 (including biological systems), Greifswald, 2000, 1. Aufl., Bd. 33, S. 177–179. doi: 10.1016/s1474-6670(17)35510-6.

1999

[1]
J. Werner, M. Hexamer, M. Meine, und B. Lemke, „Restoration of cardio-circulatory regulation by rate-adaptive pacemaker systems: the bioengineering view of a clinical problem“, IEEE transactions on biomedical engineering / Institute of Electrical and Electronics Engineers, Bd. 46, Nr. 9, S. 1057–1064, 1999.
[2]
M. Meine, M. Hexamer, J. Werner, C. W. Israel, B. Lemke, und J. Barmeyer, „Relationship between atrioventricular delay and oxygen consumption in patients with sick sinus syndrome: relevance to rate responsive pacing“, Pacing and clinical electrophysiology, Bd. 22, Nr. 7, S. 1054–1063, 1999.
[3]
M. Meine u. a., „Influence of the pacing rate on the atrioventricular conduction time during aerobic and anaerobic exercise: basic concepts for a dromotropically controlled rate responsive pacemaker“, Pacing and clinical electrophysiology, Bd. 22, Nr. 12, S. 1782–1791, 1999.
[4]
X. Xu, M. Hexamer, und J. Werner, „Multi-loop control of liquid cooling garment systems“, Ergonomics, Bd. 42, Nr. 2, S. 282–298, 1999, doi: 10.1080/001401399185658.
[5]
M. Hexamer, X. Xu, und J. Werner, „Automatic control of life support systems in extreme heat“, in Proceedings of the 14th World Congress: Volume L, Biomedical and environmental systems, systems engineering, Beijing, 1999, Bd. L, S. 5695–5700. doi: 10.1016/s1474-6670(17)56972-4.
[6]
J. Werner, M. Hexamer, M. Meine, und K. Hoeland, „Closed loop control of the heart by rate adaptive pacemakers“, in Proceedings of the 14th World Congress: Volume L, Biomedical and environmental systems, systems engineering, Beijing, 1999, Bd. L, S. 5668–5673. doi: 10.1016/s1474-6670(17)56967-0.

1998

[1]
D. Böhringer, M. Hexamer, M. Meine, und J. Werner, „Kopplung von Herz/Kreislauf-Modellen zur Analyse von frequenzadaptiven Herzschrittmachersystemen“, Biomedical engineering, Bd. 43, Nr. S1, S. 318–319, 1998, doi: 10.1515/bmte.1998.43.s1.318.

1997

[1]
M. Hexamer und J. Werner, „Control of liquid cooling garments: technical control of mean skin temperature and its adjustments to exercise“, Applied human science, Bd. 16, Nr. 6, S. 237–247, 1997, doi: 10.2114/jpa.16.237.

1996

[1]
M. Hexamer und J. Werner, „Control of liquid cooling garments: technical control of body heat storage“, Applied human science, Bd. 15, Nr. 4, S. 177–185, 1996, doi: 10.2114/jpa.15.177.

1995

[1]
J. Werner und M. Hexamer, „Überleben in der Hölle: vom Zusammenspiel technischer und physiologischer Regulationen“, Rubin Sonderheft, Nr. 1, 1995, [Online]. Verfügbar unter: http://www.ruhr-uni-bochum.de/rubin/rbin1_95/rubin6.htm
[2]
M. Hexamer und J. Werner, „Control of liquid cooling garments : subjective versus technical control of thermal comfort“, Applied human science, Bd. 14, Nr. 6, S. 271–278, 1995, doi: 10.2114/ahs.14.271.

Nach oben

To Top