Zuordnung – Stand 26.07.2023
Personenkachel unter LEMS ohne Verknüpfung.
- 1390 Fakltät ETIT
- Forschungsgruppe/Lehrstuhl für Elektronische Mess- und Schaltungstechnik (LEMS)
- Arbeitsgruppe Kfz-Elektronik
Personenkachel unter LEMS ohne Verknüpfung.
2021
[1]
E. Grundkötter und J. Melbert, „Adaptive power management of energy autonomous structural health monitoring systems for wind turbines“, in I2MTC - 2021 IEEE International Instrumentation and Measurement Technology Conference, Juni 2021, Publiziert. doi: 10.1109/i2mtc50364.2021.9459989.
[2]
E. Grundkötter und J. Melbert, „Precision blade deflection measurement system using wireless inertial sensor nodes“, Wind energy, Bd. 25, Nr. 3, S. 432–449, Sep. 2021, doi: 10.1002/we.2680.
2020
[1]
E. Grundkötter und J. Melbert, „Energy self-sufficient wireless sensor node for inertial measurements on wind turbine blades“, in IEEE SENSORS 2019, Montreal, Jan. 2020, Publiziert. doi: 10.1109/sensors43011.2019.8956859.
[2]
P. Haußmann und J. Melbert, „Sensorless individual cell temperature measurement by means of impedance spectroscopy using standard battery management systems of electric vehicles“, SAE technical papers / Society of Automotive Engineers, Bd. 2020, Art. Nr. 2020-01–0863, Apr. 2020, doi: 10.4271/2020-01-0863.
2019
[1]
P. Haußmann und J. Melbert, „Sensorless on board cell temperature control for fast charging“, SAE technical papers / Society of Automotive Engineers, Bd. 2019, Art. Nr. 146987, Apr. 2019, doi: 10.4271/2019-01-0791.
2018
[1]
P. Haußmann und J. Melbert, „Self-discharge observation for onboard safety monitoring of automotive Li-ion cells: accelerated procedures and application concept“, SAE International journal of alternative powertrains, Bd. 7, Nr. 3, S. 249–262, Apr. 2018, doi: 10.4271/2018-01-0449.
[2]
C. Lüke, P. Haußmann, und J. Melbert, „A modular wide bandwidth high performance automotive lithium-ion cell emulator for hardware in the loop application“, SAE technical papers / Society of Automotive Engineers, Bd. 2018, Art. Nr. 2018-01–0431, 2018, doi: 10.4271/2018-01-0431.
[3]
E. Grundkötter, P. Weßkamp, und J. Melbert, „Transient thermo-voltages on high-power shunt resistors“, IEEE transactions on instrumentation and measurement / Institute of Electrical and Electronics Engineers, Bd. 67, Nr. 2, S. 415–424, 2018, doi: 10.1109/tim.2017.2775418.
[4]
C. Lüke, P. Haußmann, und J. Melbert, „A wideband electronic calibration system for electrochemical impedance analysis“, in 11th International Workshop on Impedance Spectroscopy, Chemnitz, 2018, S. 47–48. [Online]. Verfügbar unter: https://publik.tuwien.ac.at/files/publik_271979.pdf
[5]
P. Haußmann und J. Melbert, „A test center for aging analysis on Li-ion cells for automotive series application - test equipment, test procedures and cell aging effects“, in Der Antrieb von morgen 2018, 2018, S. 97–115. doi: 10.1007/978-3-658-21419-7_7.
[6]
P. Haußmann und J. Melbert, „Compensation of nonlinear excitation in impedance spectra of automotive lithium-ion cells“, in 11th International Workshop on Impedance Spectroscopy, Chemnitz, 2018, S. 7–8. [Online]. Verfügbar unter: https://publik.tuwien.ac.at/files/publik_271979.pdf
2017
[1]
P. Weßkamp, S. Reitemeyer, und J. Melbert, „Online capacity estimation for automotive lithium-ion cells incorporating temperature-variation and cell-aging“, SAE technical papers / Society of Automotive Engineers, Bd. 2017, Art. Nr. 2017-01–1191, 2017, doi: 10.4271/2017-01-1191.
[2]
P. Haußmann und J. Melbert, „Internal cell temperature measurement and thermal modeling of lithium ion cells for automotive applications by means of electrochemical impedance apectroscopy“, SAE International journal of alternative powertrains, Bd. 6, Nr. 2, S. 261–270, 2017, doi: 10.4271/2017-01-1215.
[3]
P. Haußmann und J. Melbert, „Spannungsgeregelte Impedanzspektroskopie mit breitbandigen Anregungssignalen für Lithium-Ionen-Zellen in Kfz-Anwendungen“, Technisches Messen, Bd. 84, Nr. 6, S. 411–425, 2017, doi: 10.1515/teme-2017-0018.
[4]
P. Haußmann und J. Melbert, „Optimized mixed-domain signal synthesis for broadband impedance spectroscopy measurements on lithium ion cells for automotive applications“, Journal of sensors and sensor systems, Bd. 6, Nr. 1, S. 65–76, Feb. 2017, doi: 10.5194/jsss-6-65-2017.
2016
[1]
P. Weßkamp und J. Melbert, „High-accuracy current measurement with low-cost shunts by means of dynamic error correction“, Journal of sensors and sensor systems, Bd. 5, Nr. 2, S. 389–400, Nov. 2016, doi: 10.5194/jsss-5-389-2016.
[2]
P. Weßkamp, P. Haußmann, und J. Melbert, „600-A test system for aging analysis of automotive li-ion cells with high resolution and wide bandwidth“, IEEE transactions on instrumentation and measurement / Institute of Electrical and Electronics Engineers, Bd. 65, Nr. 7, S. 1651–1660, März 2016, doi: 10.1109/tim.2016.2534379.
[3]
P. Weßkamp und J. Melbert, „High performance current measurement with low-cost shunts by means of dynamic error correction“, in Sensoren und Messsysteme 2016, Nürnberg, 2016, S. 224–230.
[4]
P. Haußmann und J. Melbert, „Impedance spectroscopy on lithium ion cells for automotive applications with optimized measurement duration and frequency resolution“, in Sensoren und Messsysteme 2016, Nürnberg, 2016, S. 308–315.
2015
[1]
N. Lohmann, P. Weßkamp, P. Haußmann, J. Melbert, und T. Musch, „Electrochemical impedance spectroscopy for lithium-ion cells: test equipment and procedures for aging and fast characterization in time and frequency domain“, Journal of power sources, Bd. 273, S. 613–623, 2015, doi: 10.1016/j.jpowsour.2014.09.132.
[2]
N. Lohmann, P. Haußmann, P. Weßkamp, J. Melbert, und T. Musch, „Employing real automotive driving data for electrochemical impedance spectroscopy on lithium-ion cells“, SAE International journal of alternative powertrains, Bd. 4, Nr. 2, S. 308–317, 2015, doi: 10.4271/2015-01-1187.
2013
[1]
P. Weßkamp, M. Fischnaller, N. Lohmann, J. Melbert, und T. Musch, „Improved SOC estimation for lithium-ion cells valid for different temperatures and states-of-health“, SAE technical papers / Society of Automotive Engineers, Bd. 2013, Art. Nr. 2013-01–1537, 2013, doi: 10.4271/2013-01-1537.
2012
[1]
N. Lohmann, M. Fischnaller, J. Melbert, und T. Musch, „Cycle life investigations on different Li-Ion cell chemistries for PHEV applications based on real life conditions“, in SAE 2012 world congress, Detroit, 2012, Publiziert. doi: 10.4271/2012-01-0656.
[2]
N. Lohmann, M. Fischnaller, J. Melbert, und T. Musch, „Modeling of Li-Ion batteries for automotive applications: time domain, frequency domain and aging effects“, in Battery Congress 2012, Ann Arbor, Mich., 2012, S. 26–37.
[3]
S. Skiba und J. Melbert, „Dosing performance of Piezo injectors and sensorless closed-loop controlled solenoid injectors for gasoline direct injection“, SAE International journal of engines, Bd. 5, Nr. 2, S. 330–335, 2012, doi: 10.4271/2012-01-0394.
[4]
T. Horn und J. Melbert, „A 10-kV linear current-mode power amplifier for capacitive actuators“, IEEE transactions on instrumentation and measurement / Institute of Electrical and Electronics Engineers, Bd. 61, Nr. 1, S. 2–8, 2012, doi: 10.1109/tim.2011.2157548.
2011
[1]
M. Fischnaller, J. Melbert, S. Scharner, und T. Eichner, „Test center for aging analysis and characterization of Lithium-Ion batteries for automotive applications“, SAE technical papers / Society of Automotive Engineers, Bd. 2011, Art. Nr. 2011-01–1374, 2011, doi: 10.4271/2011-01-1374.
[2]
M. Fischnaller, N. Lohmann, und J. Melbert, „Alterungsuntersuchungen und Modellierung an Li-Ionen Zellen für Hybridfahrzeuge“, in Elektronik im Kraftfahrzeug, Baden-Baden, 2011, Bd. 2132, S. 103–112.
2010
[1]
F. Niestroj und J. Melbert, „Microsensor based 3D inertial measurement system for motion tracking in crash tests“, in Advanced Microsystems for Automotive Applications 2010, Berlin, 2010, S. 337–346. doi: 10.1007/978-3-642-16362-3_32.
1999
[1]
J. Melbert, „Vom sanften Aufprall: Elektronik ersetzt Nockenwelle“, Rubin Sonderheft, Nr. 2, 1999, [Online]. Verfügbar unter: http://www.ruhr-uni-bochum.de/rubin/rbin2_99/Artikel2/artikel2.htm