Publikationen
Veröffentlichungen aus der Hochschulbibliographie der RUB.
- 2025
- 2024
- 2023
- 2022
- 2021
- 2020
- 2019
- 2018
- 2017
- 2016
- 2015
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
- 2007
- 2006
- 2005
- 2004
- 2003
- 2002
- 2001
- 2000
- 1999
- 1998
- 1997
- 1996
- 1994
2025
[1]
F. Beckfeld u. a., „Effective secondary electron yields for different surface materials in capacitively coupled plasmas“, Plasma sources science & technology, Bd. 34, Nr. 3, Art. Nr. 035009, Feb. 2025, doi: 10.1088/1361-6595/adb885.
[2]
K. Dausien, P. Das, I. Rolfes, J. Barowski, M. Hoffmann, und C. Schulz, „Dielectric waveguide ring resonator-based biosensor for dielectric fluid spectroscopy in the THz domain“, in Microfluidics, BioMEMS, and Medical Microsystems XXIII , San Francisco, März 2025, Bd. 13312. doi: 10.1117/12.3041853.
[3]
A. Suzuki u. a., „High peak-power 2.1-μm femtosecond Holmium amplifier at 100 kHz“, Optica, Bd. 12, Nr. 4, S. 534–537, Apr. 2025, doi: 10.1364/optica.551883.
[4]
M. Kohl u. a., „Active bi- and multistability in cooperative microactuator systems“, Sensors and Actuators Reports [ISSN: 2666-0539], Bd. 9, S. 100338, Mai 2025, doi: 10.1016/j.snr.2025.100338.
[5]
M. A. Burfeindt, K. Dausien, L. Schmitt, J. Barowski, I. Rolfes, und M. Hoffmann, „Design and Analysis of a Trident-Shaped 1x3 Dielectric Waveguide Splitter for THz Applications“, in 2025 International Conference on Mobile and Miniaturized Terahertz Systems (ICMMTS), Dubai , Feb. 2025, Publiziert. doi: 10.1109/icmmts62835.2025.10926005.
[6]
A. Czylwik, A. L. Schall-Giesecke, und L. Schmitt, „High-speed beamforming concepts for THz frequencies“, in 2025 International Conference on Mobile and Miniaturized Terahertz Systems (ICMMTS), Dubai , Feb. 2025, S. 211–215. doi: 10.1109/icmmts62835.2025.10926038.
2024
[1]
L. Schmitt, P. Schmitt, und M. Hoffmann, „Highly selective tilted triangular springs with constant force reaction“, Sensors, Bd. 24, Nr. 5, Art. Nr. 1677, März 2024, doi: 10.3390/s24051677.
[2]
L. Schmitt, P. Schmitt, und M. Hoffmann, „Tilted Triangular Springs with Constant-Force Reaction“, in Proceedings / MDPI AG, Lecce, Italy, Juni 2024, Bd. 97, Nr. 1. doi: 10.3390/proceedings2024097222.
[3]
J. Jagosz u. a., „Wafer‐scale demonstration of polycrystalline MoS2 growth on 200 mm glass and SiO2/Si substrates by plasma‐enhanced atomic layer deposition“, Advanced Materials Technologies, Bd. 2024, Art. Nr. 2400492, Juli 2024, doi: 10.1002/admt.202400492.
[4]
L. Schmitt, K. Dausien, M. A. Burfeindt, J. Barowski, und M. Hoffmann, „Dielectric silicon slot-waveguides for far-infrared THz-spectroscopy“, in Terahertz Photonics III, Strasbourg, Juni 2024, Bd. 12994. doi: 10.1117/12.3017547.
[5]
I. Petrov, „Ballistischer Transport in Bilayer Graphen“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2024. doi: 10.13154/294-12467.
[6]
M. Becher, L. Willeke, C. Bock, und A. Ostendorf, „Post treatment of plasma enhanced atomic layer deposited MoS2 via ultra short pulse laser to increase the crystallinity“, in Laser + Photonics for Advanced Manufacturing, Strasbourg, Juni 2024, Bd. 13005. doi: 10.1117/12.3016372.
[7]
M. J. M. J. Becher u. a., „Pulse duration dependent formation of laser‐induced periodic surface structures in atomic layer deposited MoS2“, Advanced materials interfaces, Art. Nr. 2400478, Okt. 2024, Publiziert, doi: 10.1002/admi.202400478.
[8]
K. Dausien u. a., „Investigation on LNN-self-calibration procedures for dielectric waveguide measurements“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, 2024, S. 442–446. doi: 10.1109/iceaa61917.2024.10701676.
[9]
K. Dausien, L. Schmitt, C. Schulz, I. Rolfes, M. Hoffmann, und J. Barowski, „Dielectric Slot-Waveguide Interconnection for THz Systems“, in 2024 54th European Microwave Conference (EuMC), Paris, Okt. 2024, S. 592–595. doi: 10.23919/eumc61614.2024.10732473.
[10]
A. Omar, B. Kassai, M. Hoffmann, und C. J. Saraceno, „Dual-beam multipass cell compression for time-resolved femtosecond spectroscopy setups“, in 11th EPS-QEOD Europhoton Conference on Solid-State, Fibre, and Waveguide Coherent Light Sources, Vilnius, Okt. 2024, Bd. 307. doi: 10.1051/epjconf/202430704065.
2023
[1]
L. Schmitt, X. Liu, P. Schmitt, A. Czylwik, und M. Hoffmann, „Large Displacement Actuators With Multi-Point Stability for a MEMS-Driven THz Beam Steering Concept“, Journal of microelectromechanical systems, Bd. 32, Nr. 2, S. 195–207, Jan. 2023, doi: 10.1109/jmems.2023.3236145.
[2]
J. Barowski, L. Schmitt, K. Kother, und M. Hoffmann, „Design, simulation, and characterization of MEMS-based slot waveguides“, IEEE transactions on microwave theory and techniques, Bd. 71, Nr. 9, S. 3819–3828, März 2023, doi: 10.1109/tmtt.2023.3255589.
[3]
L. Schmitt, P. Conrad, A. Kopp, C. Ament, und M. Hoffmann, „Non-Inchworm Electrostatic Cooperative Micro-Stepper-Actuator Systems with Long Stroke“, Actuators, Bd. 12, Nr. 4, Art. Nr. 150, März 2023, doi: 10.3390/act12040150.
[4]
V. Bedarev, P. A. Maaß, A. Thewes, M. Böke, und A. von Keudell, „Plasma deposited carbon containing zirconia films as thermal barriers“, Journal of vacuum science & technology A, Bd. 41, Nr. 5, Art. Nr. 053001, Juli 2023, doi: 10.1116/6.0002745.
[5]
M. Becher, J. Jagosz, C. Bock, A. Ostendorf, und E. L. Gurevich, „Formation of low- and high-spatial frequency laser-induced periodic surface structures (LIPSSs) in ALD-deposited MoS2“, Frontiers in nanotechnology, Bd. 5, Art. Nr. 1227025, Juli 2023, doi: 10.3389/fnano.2023.1227025.
[6]
P. Schmitt, M. Hoffmann, und M. Hoffmann, „Sensors at the Edge: Towards Micromechanical in-Memory Computing“, in 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS), Juli 2023, Publiziert. doi: 10.1109/coins57856.2023.10189322.
[7]
J. Schulze u. a., „The effects of different boundary surface materials on the electron power absorption dynamics in capacitive RF plasmas“, in Bulletin of the American Physical Society, Ann Arbor, Okt. 2023, Bd. 68. [Online]. Verfügbar unter: https://meetings.aps.org/Meeting/GEC23/Session/ER4.3
[8]
P. Schmitt, B. Gojdka, T. Lisec, M. Kroll, und M. Hoffmann, „SOI Integrated Micromagnets for mechanical Magnetic Field Detection“, IEEE sensors letters / Institute of Electrical and Electronics Engineers, Bd. 7, Nr. 9, Art. Nr. 2502804, Aug. 2023, doi: 10.1109/lsens.2023.3308125.
[9]
L. Schmitt, „Elektrostatische MEMS-Schritt-Aktoren mit großen und linearen Stellwegen für THz-Anwendungen“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023. doi: 10.13154/294-9858.
[10]
M. Becher u. a., „Ultrashort‐pulsed‐laser annealing of amorphous atomic‐layer‐deposited MoS2 films“, Advanced engineering materials, Bd. 25, Nr. 21, Art. Nr. 2300677, Aug. 2023, doi: 10.1002/adem.202300677.
[11]
M. A. Burfeindt, K. Kother, L. Schmitt, J. Barowski, I. Rolfes, und M. Hoffmann, „Approaching dielectric silicon slot waveguides for THz frequencies by simulation from optical and electrical points of view“, in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, Publiziert. doi: 10.1109/iwmts58186.2023.10207848.
[12]
K. Kother, L. Schmitt, J. Barowski, M. Hoffmann, und I. Rolfes, „Simulation und Charakterisierung von dielektrischen MEMS-Spaltwellenleitern für den THz-Bereich “, in MikroSystemTechnik Kongress 2023, Dresden, 2023, S. 42–46.
[13]
E. Grundkötter, „Elektronische Messeinrichtung zur Untersuchung von mechanischen Belastungen in Windkraftanlagen“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023. doi: 10.13154/294-10699.
[14]
A. Thewes, „Elektrostatische Konstantkraft-Sensor-Aktor-Mikrosysteme“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023. doi: 10.13154/294-10715.
[15]
M. J. M. J. Becher, L. Willeke, M. Wilken, A. Devi, C. Bock, und A. Ostendorf, „Ultrashort pulse laser phase transition of 2D MoS 2 produced by atomic layer deposition: Beitrag zum Themenbereich ‚Processing of semiconductors and transparent materials‘“, in LiM 2023 proceedings, München, Sep. 2023, Publiziert. [Online]. Verfügbar unter: https://www.wlt.de/sites/default/files/2023-09/Contribution_182.pdf
[16]
P. Schmitt und M. Hoffmann, „A force-compensated compliant MEMS-amplifier with electrostatic anti-springs“, Microsystems & nanoengineering, Bd. 9, Nr. 1, Art. Nr. 83, Juni 2023, doi: 10.1038/s41378-023-00557-5.
[17]
L. Willeke, M. Becher, N. Schmitt, J. Jagosz, A. Ostendorf, und C. Bock, „Konzepte zur Reduktion des MoS2-Kontaktwiderstandes basierend auf großflächig gewachsenen PEALD-Filmen“, in MikroSystemTechnik Kongress 2023, Dresden, 2023, S. 11–17.
[18]
J. Jagosz, L. Willeke, M. Becher, A. Ostendorf, und C. Bock, „Großflächiges polykristallines Wachstum von Molybdändisulfid auf 200 mm Glaswafern für die Integration in einem 2D pH-Sensorsystem“, in MikroSystemTechnik Kongress 2023, Dresden, 2023, S. 345–350.
[19]
M. Hoffmann u. a., „Storing MEMS Interfaces Without Electrical Auxiliary Energy for Long-Time Monitoring“, in 2023 IEEE 36TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, Jan. 2023, S. 522525. doi: 10.1109/mems49605.2023.10052634.
[20]
A. M. Kopp, P. Conrad, M. Hoffmann, und H. Ament, „System level modeling and closed loop control for a droplet-based micro-actuator“, in 2023 SICE International Symposium on Control Systems (SICE ISCS), März 2023, S. 3340. doi: 10.23919/siceiscs57194.2023.10079205.
[21]
P. Schmitt, M. Buschheuer, und M. Hoffmann, „Mikromechanische Zugversuche auf Chip-Level“, in MikroSystemTechnik Kongress 2023, Dresden, Jan. 2023, S. 389–392.
[22]
L. Schmitt, P. Schmitt, und M. Hoffmann, „Verkippte Konstantkraft-Dreiecksfedern für weitauslenkende elektrostatische Aktoren“, in MikroSystemTechnik Kongress 2023, Dresden, Jan. 2023, S. 844–847.
[23]
C. Weigel u. a., „Reaktives Ionenätzen von Silikatgläsern für optische Mikrosysteme“, in MikroSystemTechnik Kongress 2023, Dresden, Jan. 2023, S. 449–451.
[24]
M. Farny, M. Olbrich, A. Schütz, C. Ament, T. Bechtold, und M. Hoffmann, „Magnetische Streufeld-basierte 2D-Rotationsbestimmung für einen Mikroaktor mit großer Auslenkung“, in MikroSystemTechnik Kongress 2023, Dresden, Jan. 2023, S. 124–128.
[25]
P. Schmitt u. a., „Monolithic integration of permanent magnets in SOI-based micro-mechanisms“, in MikroSystemTechnik Kongress 2023, Dresden, Jan. 2023, S. 272–275.
[26]
K. Kother, L. Schmitt, J. Barowski, M. Hoffmann, und I. Rolfes, „Simulation und Charakterisierung von dielektrischen MEMS-Spaltwellenleitern für den THz-Bereich“, in MikroSystemTechnik Kongress 2023, Dresden, Jan. 2023, S. 42–46.
[27]
A. C. Thewes und M. Hoffmann, „Mikromechanische Konstantkraft-Mechanismen“, in MikroSystemTechnik Kongress 2023, Dresden, Jan. 2023, S. 529–535.
2022
[1]
R.-M. Neubieser u. a., „Low-temperature ALD process development of 200 mm wafer-scale MoS2 for gas sensing application“, Micro and nano engineering, Bd. 15, Art. Nr. 100126, 2022, doi: 10.1016/j.mne.2022.100126.
[2]
M. Olbrich, M. Farny, M. Hoffmann, und C. Ament, „Modeling and control design of a contact-based, electrostatically actuated rotating sphere“, Actuators, Bd. 11, Nr. 3, Art. Nr. 90, März 2022, doi: 10.3390/act11030090.
[3]
P. Schmitt und M. Hoffmann, „Tracing the force-displacement characteristics of non-linear microsystems by in-situ characterization“, in 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, 2022, S. 691–694. doi: 10.1109/mems51670.2022.9699564.
[4]
F. Schenkel, I. Barengolts, L. Schmitt, I. Rolfes, M. Hoffmann, und J. Barowski, „Silicon based metamaterials for dielectric waveguides in the THz range“, in 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, Juli 2022, S. 460–463. doi: 10.1109/mms55062.2022.9825523.
[5]
L. Schmitt, J. Barowski, und M. Hoffmann, „THz phase shifter based on MEMS-actuated slot waveguides“, in 2022 Fifth International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Juli 2022, Publiziert. doi: 10.1109/iwmts54901.2022.9832456.
[6]
T. Berning u. a., „Nucleation and growth studies of large-area deposited WS2 on flexible substrates“, Materials Research Express, Bd. 9, Nr. 11, Art. Nr. 116401, 2022, doi: 10.1088/2053-1591/ac9bd0.
[7]
D. Zanders u. a., „Unveiling ruthenium(II) diazadienyls for gas phase deposition processes: low resistivity ru thin films and their performance in the acidic oxygen evolution reaction“, Advanced materials interfaces, Bd. 9, Nr. 35, Art. Nr. 2201709, 2022, doi: 10.1002/admi.202201709.
[8]
P. Kadera u. a., „Sub-THz Luneburg lens enabled wide-angle frequency-coded identification tag for passive indoor self-localization“, International journal of microwave and wireless technologies, Bd. 15, Nr. 1, S. 59–73, 2022, doi: 10.1017/s175907872200054x.
[9]
X. Liu u. a., „Terahertz beam steering using a MEMS-based reflectarray configured by a genetic algorithm“, IEEE access / Institute of Electrical and Electronics Engineers, Bd. 10, S. 84458–84472, Aug. 2022, doi: 10.1109/access.2022.3197202.
[10]
S. Hanitsch, „PNIPAM‐basierte Hydrogelaktoren in mikro‐ und mesoskaligen Systemen“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2022. doi: 10.13154/294-9245.
[11]
P. Schmitt und M. Hoffmann, „A passive acceleration sensor with mechanical 6 bit memory and mechanical analog-to-digital converter“, Micro and nano engineering, Bd. 15, Art. Nr. 100142, Juni 2022, doi: 10.1016/j.mne.2022.100142.
[12]
M. Farny, M. Olbrich, C. Ament, und M. Hoffmann, „Kick & Catch: Coaction of an electrostatic kick and magnetic catch system for the rotation of a sphere“, in Actuator 2022, Mannheim, 2022, Bd. 101, S. 358–361.
[13]
A. Schuetz, M. Farny, M. Olbrich, M. Hoffmann, C. Ament, und T. Bechtold, „Model order reduction of a nonlinear electromechanical beam actuator by clustering nonlinearities“, in Actuator 2022, Mannheim, 2022, Bd. 101, S. 354–357.
[14]
P. Schmitt, L. Schmitt, und M. Hoffmann, „How to reduce the pull-in displacement of parallel-plate actuators“, in Actuator 2022, Mannheim, 2022, Bd. 101, S. 252–255.
[15]
L. Schmitt, P. Schmitt, und M. Hoffmann, „Optimization of electrostatic bending-plate actuators: increasing the displacement and adjusting the actuator stiffness“, in Actuator 2022, Mannheim, 2022, Bd. 101, S. 248–251.
[16]
A. Thewes, M. Jondral, und M. Hoffmann, „Directional behavior of periodic honeycombs: towards lightweight MEMS on SOI wafers“, in Actuator 2022, Mannheim, 2022, Bd. 101, S. 244–247.
[17]
P. Conrad, A. Berdnykov, und M. Hoffmann, „Design of a liquid dielectrophoresis-driven platform with cooperative actuation“, in Actuator 2022, Mannheim, 2022, Bd. 101, S. 182–185.
[18]
P. Conrad, L. Willeke, und M. Hoffmann, „Plasmaunterstützte Atomlagenabscheidung (ALD) von Al 2O3 für Isolationsschichten in EWOD-Systemen“, in Mikro-Nano-Integration, Aachen, 2022, Bd. 105, S. 118–122.
[19]
L. Willeke, J. Jagosz, N. Gerke, P. Plate, M. Hoffmann, und C. Bock, „Comparative study of wafer-scale Al2O3 layers made by thermal and plasma-enhanced ALD“, in Mikro-Nano-Integration, Aachen, 2022, Bd. 105, S. 100–104.
[20]
M. Hillebrand, A. Thewes, und M. Hoffmann, „Erhöhung des Technologie-Reifegrades von Silicium-Gras zur Breitbandigen Entspiegelung von Siliciumoberflächen“, in Mikro-Nano-Integration, Aachen, 2022, Bd. 105, S. 95–99.
[21]
J. Jagosz, L. Willeke, M. Becher, A. Ostendorf, P. Plate, und C. Bock, „Large-area deposition of thin crystalline MoS2 films on 200 mm wafers using plasma-assisted atomic layer deposition“, in Mikro-Nano-Integration, Aachen, 2022, Bd. 105, S. 8–11.
[22]
P. Schmitt und M. Hoffmann, „A passive micromechanical counting mechanism“, in SENSORS 2022 conference proceedings, Dallas, TX, 2022, Publiziert. doi: 10.1109/sensors52175.2022.9967002.
[23]
X. Liu u. a., „Optimizing the radiation pattern of a MEMS-based reflectarray using a genetic algorithm for beam steering applications“, in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, Sep. 2022, Publiziert. doi: 10.1109/irmmw-thz50927.2022.9895897.
[24]
L. Schmitt, A. Ortloff-Kittredge, M. Smith, und A. Naiakshina, „Let’s hash: helping developers with password security“, in Proceedings of the Eighteenth Symposium on Usable Privacy and Security (SOUPS 2022), Boston, MA, 2022, S. 503–522. [OnlineRessource]. Verfügbar unter: https://casa.rub.de/fileadmin/img/Publikationen_PDFs/2022_Lets-Hash-Helping-Developers-with-Password-Security_Publication_ClusterofExcellence_CASA_Bochum.pdf
[25]
P. Schmitt, „Passive mikromechanische Bauelemente und Schaltungen für energieautarke Sensoren“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2022. doi: 10.13154/294-9536.
[26]
M. Farny, M. Olbrich, C. Ament, und M. Hoffmann, „Kick & Catch: Coaction of an electrostatic kick and magnetic catch system for the rotation of a sphere“, in GMM-Fachberichte, Jan. 2022, S. 358361.
[27]
L. Schmitt, P. Schmitt, und M. Hoffmann, „Optimization of Electrostatic Bending-Plate Actuators: Increasing the Displacement and Adjusting the Actuator Stiffness“, in GMM-Fachberichte, Jan. 2022, S. 248251.
[28]
P. Schmitt, L. Schmitt, und M. Hoffmann, „How to reduce the Pull-in Displacement of Parallel-Plate Actuators“, in GMM-Fachberichte, Jan. 2022, S. 252255.
[29]
A. C. Thewes, M. Jondral, und M. Hoffmann, „Directional Behavior of Periodic Honeycombs: towards Lightweight MEMS on SOI Wafers“, in GMM-Fachberichte, Jan. 2022, S. 244247.
[30]
P. Conrad, A. Berdnykov, und M. Hoffmann, „Design of a Liquid Dielectrophoresis-driven Platform with Cooperative Actuation“, in GMM-Fachberichte, Jan. 2022, S. 182185.
[31]
A. Schütz, M. Farny, M. Olbrich, M. Hoffmann, C. Ament, und T. Bechtold, „Model Order Reduction of a Nonlinear Electromechanical Beam Actuator by Clustering Nonlinearities“, in GMM-Fachberichte, Jan. 2022, S. 354357.
[32]
M. Hillebrand, A. C. Thewes, M. Hoffmann, L. Bindel, und S. Gaßner, „Erhöhung des Technologie-Reifegrades von Silicium-Gras zur Breitbandigen Entspiegelung von Siliciumoberflächen“, in Mikro-Nano-Integration, Aachen, Jan. 2022, Bd. 105, S. 95–99.
[33]
P. Conrad, L. Willeke, und M. Hoffmann, „Plasmaunterstützte Atomlagenabscheidung (ALD) von A12 03 für Isolationsschichten in EWOD-Systemen“, in Mikro-Nano-Integration, Aachen, Jan. 2022, Bd. 105, S. 118–122.
[34]
L. Willeke, J. Jagosz, N. Gerke, P. Plate, M. Hoffmann, und C. Bock, „Comparative study of wafer-scale Al2 O3 layers made by thermal and plasma-enhanced ALD“, in Mikro-Nano-Integration, Aachen, Jan. 2022, Bd. 105, S. 100–104.
[35]
J. Jagosz, L. Willeke, M. Becher, A. Ostendorf, P. Plate, und C. Bock, „Large-area deposition of thin crystalline MoS2 films on 200 mm wafers using plasma-assisted atomic layer deposition“, in Mikro-Nano-Integration, Aachen, Jan. 2022, Bd. 105, S. 8–11.
2021
[1]
V. Besaga, „Transmission digital holography for high-precision non-destructive imaging and metrology“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2021. doi: 10.13154/294-7934.
[2]
C. Weigel, H. B. Phi, F. A. Denissel, M. Hoffmann, S. Sinzinger, und S. Strehle, „Highly anisotropic fluorine‐based plasma etching of ultra-low expansion glass“, Advanced engineering materials, Bd. 23, Nr. 6, Art. Nr. 2001336, Feb. 2021, doi: 10.1002/adem.202001336.
[3]
S. Supreeti, R. Schienbein, P. Feßer, F. Fern, M. Hoffmann, und S. Sinzinger, „Development and implementation of a rotating nanoimprint lithography tool for orthogonal imprinting on edges of curved surfaces“, Nanomanufacturing and metrology, Bd. 4, Nr. 3, S. 175–180, Aug. 2021, doi: 10.1007/s41871-021-00114-6.
[4]
S. Beer u. a., „A study on the influence of ligand variation on formamidinate complexes of yttrium: new precursors for atomic layer deposition of yttrium oxide“, Dalton transactions, Bd. 50, Nr. 37, S. 12944–12956, Juli 2021, doi: 10.1039/d1dt01634b.
[5]
A. Thewes, P. Schmitt, P. Löhler, und M. Hoffmann, „Design and characterization of an electrostatic constant-force actuator based on a non-linear spring system“, Actuators, Bd. 10, Nr. 8, Art. Nr. 192, Aug. 2021, doi: 10.3390/act10080192.
[6]
L. Schmitt, P. Schmitt, und M. Hoffmann, „3-bit digital-to-analog converter with mechanical amplifier for binary encoded large displacements“, Actuators, Bd. 10, Nr. 8, Art. Nr. 182, Aug. 2021, doi: 10.3390/act10080182.
[7]
D. Zanders u. a., „Cobalt metal ALD: Understanding the mechanism and role of zinc alkyl precursors as reductants for low-resistivity co thin films“, Chemistry of materials, Bd. 33, Nr. 13, S. 5045–5057, Juni 2021, doi: 10.1021/acs.chemmater.1c00877.
[8]
P. Lu, X. Chen, P. Ohlckers, E. Halvorsen, M. Hoffmann, und L. Müller, „DRIE Si nanowire arrays supported nano-carbon film for deriving high specific energy supercapacitors on-chip“, in 30th Micromechanics and Microsystems Europe Workshop (MME 2019), Oxford, Apr. 2021, Bd. 1837. doi: 10.1088/1742-6596/1837/1/012005.
[9]
P. Schmitt, L. Schmitt, N. Tsivin, und M. Hoffmann, „Highly selective guiding springs for large displacements in surface MEMS“, Journal of microelectromechanical systems, Bd. 30, Nr. 4, S. 597–611, Mai 2021, doi: 10.1109/jmems.2021.3074822.
[10]
N. Boysen u. a., „Atomic layer deposition of dielectric Y2O3 thin films from a homoleptic yttrium formamidinate precursor and water“, RSC Advances [ISSN: 2046-2069], Bd. 11, Nr. 5, S. 25652574, Jan. 2021, doi: 10.1039/d0ra09876k.
[11]
P. Kadera u. a., „Frequency coded retroreflective landmark for 230 GHz indoor self-localization systems“, in EuCAP 2021, Online, 2021, Publiziert. doi: 10.23919/eucap51087.2021.9410973.
[12]
L. Schmitt, X. Liu, A. Czylwik, und M. Hoffmann, „Design and fabrication of MEMS reflectors for THz reflect-arrays“, in 2021 Fourth international workshop on mobile terahertz systems (IWMTS), Juli 2021, Publiziert. doi: 10.1109/iwmts51331.2021.9486804.
[13]
L. Schmitt und M. Hoffmann, „Large Stepwise Discrete Microsystem Displacements Based on Electrostatic Bending Plate Actuation“, Actuators, Bd. 10, Nr. 10, Art. Nr. 272, Okt. 2021, doi: 10.3390/act10100272.
[14]
X. Liu, L. Schmitt, K. Kolpatzeck, M. Hoffmann, J. C. Balzer, und A. Czylwik, „Configuration of a MEMS-based terahertz reflectarray using a genetic algorithm“, in 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, Okt. 2021, S. 1–2. doi: 10.1109/irmmw-thz50926.2021.9567102.
[15]
P. Conrad und M. Hoffmann, „A consistent view on cooperative multistage electrostatic actuation“, in Actuator 2021, Online, 2021, Bd. 98, S. 431–434. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/9400639
[16]
L. Schmitt, P. Schmitt, J. Barowski, und M. Hoffmann, „Stepwise electrostatic actuator system for THz reflect arrays“, in Actuator 2021, Online, 2021, Bd. 98, S. 233–236. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/9400590
[17]
M. Becher u. a., „Raman spectroscopy as an effective tool for characterizing large-area 2D TMDs deposited from the gas phase“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 498–501. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/9698353
[18]
A. Thewes, P. Schmitt, P. Löhler, und M. Hoffmann, „Mikromechanischer Konstant-Kraft Taster zur Stimulation und Analyse von Zellen“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 317–320.
[19]
L. Schmitt, P. Schmitt, und M. Hoffmann, „Mechanischer 3-Bit Digital-Analog-Wandler (DAC) mit großem Stellweg“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 266–269.
[20]
C. Weigel u. a., „Perspectives of reactive ion etching of silicate glasses for optical microsystems“, Journal of optical microsystems, Bd. 1, Nr. 4, Art. Nr. 040901, Dez. 2021, doi: 10.1117/1.jom.1.4.040901.
[21]
P. Schmitt und M. Hoffmann, „Energieautarker Beschleunigungssensor mit Maximalwertspeicher“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 660–663.
[22]
M. Farny und M. Hoffmann, „Kick & Catch: elektrostatisches Rotieren einer Kugel“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 274–277.
[23]
M. Hoffmann u. a., „Speichernde Sensorkonzepte mit in-memory-Computing, ganz ohne elektrische Hilfsenergie“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 106–109.
[24]
M. Hoffmann u. a., „Ein Prozess-Integrierendes Clustertool für 2D-Materialsysteme: vom Einzelprozess zur Integration auf Waferlevel“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 502–505.
[25]
T. Berning, S. Beer, N. Boysen, A. Devi, und C. Bock, „Electrical properties of functional Y2O3 films applied to thin film transistors“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 723–726.
[26]
H. Mehner, P. Schmitt, und M. Hoffmann, „Mikrosysteme zur Messung von Haftreib- und Gleitreibfaktoren an DRIE geätzten Seitenwänden bei hohen Normalkräften im mN-Bereich“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 110–113.
[27]
C. Weigel, H. B. Phi, M. Hoffmann, S. Sinzinger, und S. Strehl, „Vergleich der Plasmastrukturierbarkeit von Materialien mit sehr geringer thermischer Ausdehnung“, in MikroSystemTechnik Kongress 2021, Stuttgart-Ludwigsburg, 2021, S. 51–54.
[28]
M. Farny, „Kick & Catch: elektrostatisches Rotieren einer Kugel“, in MikroSystemTechnik Kongress, Nov. 2021, Publiziert.
[29]
P. Kadera u. a., „Frequency Coded Retroreflective Landmark for 230 GHz Indoor Self-Localization Systems“, in 2021 15TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), Jan. 2021, Publiziert.
2020
[1]
L. Mai u. a., „Zinc oxide: from precursor chemistry to gas sensors: plasma‐enhanced atomic layer deposition process engineering for zinc oxide layers from a nonpyrophoric zinc precursor for gas barrier and sensor applications“, Small, Bd. 16, Nr. 22, S. 2070122, Juni 2020, doi: 10.1002/smll.202070122.
[2]
L. Mai u. a., „From precursor chemistry to gas sensors: plasma‐enhanced atomic layer deposition process engineering for zinc oxide layers from a nonpyrophoric zinc precursor for gas barrier and sensor applications“, Small, Bd. 16, Nr. 22, Art. Nr. 1907506, Apr. 2020, doi: 10.1002/smll.201907506.
[3]
M. Kasischke, „Untersuchung der Laserbearbeitung von Graphen, Graphenoxid und Indiumoxid für die Anwendung in lösungsprozessierten Metalloxid-Dünnfilmtransistoren“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2020.
[4]
S. Biermann u. a., „Advanced broadband MEMS infrared emitter based on high-temperature-resistant nanostructured surfaces and packaging solutions for harsh environments“, in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIII, San Francisco, USA, März 2020, Bd. 11279. doi: 10.1117/12.2545119.
[5]
P. Schmitt und M. Hofmann, „Direct binary encoding of displacements on the nano-scale“, gehalten auf der 2020 IEEE International MEMS, Vancouver, Canada, Apr. 2020, Publiziert. doi: 10.1109/mems46641.2020.9056116.
[6]
P. Schmitt und M. Hoffmann, „Engineering a compliant mechanical amplifier for MEMS sensor applications“, Journal of microelectromechanical systems, Bd. 29, Nr. 2, S. 214–227, Jan. 2020, doi: 10.1109/jmems.2020.2965260.
[7]
X. Liu u. a., „Terahertz beam steering concept based on a MEMS-reconfigurable reflection grating“, Sensors, Bd. 20, Nr. 10, Art. Nr. 2874, Mai 2020, doi: 10.3390/s20102874.
[8]
A. Thewes, M. Breisch, C. Sengstock, und M. Hoffmann, „Vitalitätsuntersuchung adhärenter Stammzellen auf nanostrukturierter Silicium-Oberfläche“, in Mikro-Nano-Integration, 2020, Neuerscheinung., Bd. 97, S. 18–22.
[9]
A. Jiménez-Sáez u. a., „Frequency-coded mm-wave tags for self-localization system using dielectric resonators“, Journal of infrared, millimeter, and terahertz waves, Bd. 41, Nr. 8, S. 908–925, Juni 2020, doi: 10.1007/s10762-020-00707-0.
[10]
K. Schricker, L. Samfaß, M. Grätzel, G. Ecke, und J. P. Bergmann, „Bonding mechanisms in laser-assisted joining of metal-polymer composites“, Journal of advanced joining processes, Bd. 1, Art. Nr. 100008, Feb. 2020, doi: 10.1016/j.jajp.2020.100008.
[11]
L. Schmitt, P. Schmitt, X. Liu, A. Czylwik, und M. Hoffmann, „Micromechanical reflect-array for THz radar beam steering based on a mechanical D/A converter and a mechanical amplifier“, in 2020 Third International Workshop on Mobile Terahertz Systems (IWMTS 2020), Online, 2020, S. 42–46. doi: 10.1109/iwmts49292.2020.9166235.
[12]
T. Berning, J.-L. Wree, A. Devi, und C. Bock, „Strukturierung von großflächig abgeschiedenen übergangsmetall-Dichalkogenid Filmen für den Einsatz in der 2D-Elektronik“, in Mikro-Nano-Integration, 2020, Neuerscheinung., Bd. 97, S. 37–41.
[13]
M. Hoffmann, „Vorwort“, in Mikro-Nano-Integration, 2020, Neuerscheinung., Bd. 97, S. 3–3.
2019
[1]
L. Samfaß, N. Baak, R. Meya, O. Hering, A. E. Tekkaya, und F. Walther, „Micro-magnetic damage characterization of bent and cold forged parts“, Production engineering, Bd. 14, Nr. 1, S. 77–85, Nov. 2019, doi: 10.1007/s11740-019-00934-y.
[2]
D. Zanders u. a., „PEALD of HfO2 thin films: precursor tuning and a new near-ambient-pressure XPS approach to in situ examination of thin-film surfaces exposed to reactive gases“, ACS applied materials & interfaces, Bd. 11, Nr. 31, S. 28407–28422, Juli 2019, doi: 10.1021/acsami.9b07090.
[3]
M. Kasischke u. a., „Femtosecond laser patterning of graphene electrodes for thin-film transistors“, Applied surface science, Bd. 478, S. 299–303, Jan. 2019, doi: 10.1016/j.apsusc.2019.01.198.
[4]
L. Mai u. a., „Low-temperature plasma-enhanced atomic layer deposition of Tin(IV) oxide from a functionalized alkyl precursor: fabrication and evaluation of SnO2-based thin-film transistor devices“, ACS applied materials & interfaces, Bd. 11, Nr. 3, S. 3169–3180, Jan. 2019, doi: 10.1021/acsami.8b16443.
[5]
S. Supreeti u. a., „Integrated soft UV-nanoimprint lithography in a nanopositioning and nanomeasuring machine for accurate positioning of stamp to substrate“, in Novel patterning technologies for semiconductors, 2019, Bd. 10958. doi: 10.1117/12.2514832.
[6]
C. Weigel, S. Sinzinger, und M. Hoffmann, „Comparision of deep etched borosilicate glasses in a fluorine based plasma“, in 2019 20th International conference on solid-state sensors, actuators and microsystems & eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Aug. 2019, Publiziert. doi: 10.1109/transducers.2019.8808269.
[7]
J. Stegner u. a., „Cross-hierarchical design of compact RF-MEMS oscillator circuits on a silicon-ceramic composite substrate“, in 2019 Joint conference of the IEEE international frequency control symposium and european frequency and time forum (EFTF/IFC), Orlando, Florida, Okt. 2019, Publiziert. doi: 10.1109/fcs.2019.8856111.
[8]
F. Jaehnike, D.-V. Pham, C. Bock, und U. Kunze, „Role of gallium and yttrium dopants on the stability and performance of solution processed indium oxide thin-film transistors“, Journal of materials chemistry C, Bd. 7, Nr. 25, S. 7627–7635, Mai 2019, doi: 10.1039/c8tc06270f.
[9]
A. Ludwig u. a., „Spin injection in GaAs by cleaved edge overgrowth“, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2019, Bd. 6. Reihe, Bd 45, Nr. 3. [Online]. Verfügbar unter: https://www.dpg-verhandlungen.de/year/2010/conference/regensburg/downloads
[10]
C. Weigel, S. Sinzinger, S. Strehle, und M. Hoffmann, „Trockenchemisches Freistellen von Mikrostrukturen in der Glaskeramik Zerodur“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 154–157.
[11]
K. Wedrich, L. Müller, A. Magi, S. Biermann, R. Koppert, und M. Hoffmann, „Hochtemperatur-feste nanostrukturierte IR-Emitter“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 494–497.
[12]
J. Stegner u. a., „Highly integrated RF-MEMS multi-frequency oscillator on a silicon-ceramic composite substrate“, in 2019 IEEE MTT-S International Microwave Symposium (IMS 2019), Boston, Mass., 2019, S. 782–785. doi: 10.1109/mwsym.2019.8700986.
[13]
P. Schmitt und M. Hoffmann, „How to defeat electric noise in measurement acquisition using a micromechanical analog-to-digital converter“, in 2019 20th International conference on solid-state sensors, actuators and microsystems & eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Aug. 2019, S. 2001–2004. doi: 10.1109/transducers.2019.8808539.
[14]
R. Petrich u. a., „Untersuchung von ScAlN für piezoelektrische und ferroelektrische Anwendungen“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 412–416.
[15]
M. Fischer, S. Gropp, J. Stegner, A. Frank, M. Hoffmann, und J. Mueller, „Silicon-Ceramic Composite Substrate: A Promising RF Platform for Heterogeneous Integration“, IEEE microwave magazine for the microwave & wireless engineer, Bd. 20, Nr. 10, S. 28–43, Sep. 2019, doi: 10.1109/mmm.2019.2928675.
[16]
J.-L. Wree, T. Berning, C. Bock, und A. Devi, „Chemische Gasphasenabscheidung von 2D Übergangsmetall Dichalkogeniden für mikroelektronische Anwendungen“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 56–59.
[17]
P. Schmitt, N. Tsivin, und M. Hoffmann, „Mikromechanischer Analog-Digital Wandler zur Digitalisierung mechanischer Verschiebungen“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 84–87.
[18]
U. Stehr u. a., „Ganzheitliche Entwurfsmethodik für kompakte HF-MEMS-Oszillatoren auf einem SiCer-Verbundsubstrat“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 669–672.
[19]
A. Thewes, C. Weigel, J. Barowski, und M. Hoffmann, „Optimierung eines Biegeplattenwellensensors für hohe Eindringtiefe und Sensitivität“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 448–451.
[20]
J. Stegner, S. Gropp, D. Podoskin, U. Stehr, M. Hoffmann, und M. A. Hein, „An analytical formulation of the radio-frequency response of piezoelectric contour-mode MEMS resonators verified by measurements“, in 2018 IEEE International Frequency Control Symposium (IFCS), Olympic Valley, USA, März 2019, Publiziert. doi: 10.1109/fcs.2018.8597517.
[21]
C. Bock, E. Subasi, T. Berning, D.-V. Pham, und U. Kunze, „Graphen-Elektroden für den Einsatz in Metalloxid-Dünnfilmtransistoren“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 142–145.
[22]
C. Weigel, S. Hanitsch, L. Dressler, und M. Hoffmann, „Mikrofluidische In-plane-Kontaktierungskonzepte“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 549–552.
[23]
R. Petrich u. a., „Investigation of ScAlN for piezoelectric and ferroelectric applications“, in 2019 22nd European microelectronics and packaging conference & exhibition (EMPC), Pisa, Italy, 2019, Publiziert. doi: 10.23919/empc44848.2019.8951824.
[24]
N. Hekmat u. a., „Optical rectification of a 100-W average power modelocked oscillator in cryogenically-cooled GaP“, in Optics InfoBase Conference Papers, Jan. 2019, Bd. Part F140-CLEO_Europe 2019.
2018
[1]
S. Günther u. a., „Electrowetting controlled non-volatile integrated optical switch“, in 2018 European Conference on Optical Communication (ECOC), Rome, Dez. 2018, S. 1–3. doi: 10.1109/ecoc.2018.8535585.
[2]
S. Si und M. Hoffmann, „Image inverting, topography and feature size manipulation using organic/inorganic bi-layer lift-off for nanoimprint template“, Microelectronic engineering, Bd. 197, S. 39–44, Mai 2018, doi: 10.1016/j.mee.2018.05.005.
[3]
Q. Yuan u. a., „Surface-nanostructured Al–AlN composite thin films with excellent broad-band antireflection properties fabricated by limited reactive sputtering“, ACS applied nano materials, Bd. 1, Nr. 3, S. 1124–1130, 2018, doi: 10.1021/acsanm.7b00302.
[4]
M. Kühnel u. a., „Towards alternative 3D nanofabrication in macroscopic working volumes“, Measurement science and technology, Bd. 29, Nr. 11, Art. Nr. 114002, 2018, doi: 10.1088/1361-6501/aadb57.
[5]
L. Mai u. a., „Water assisted atomic layer deposition of yttrium oxide using tris(N,N′-diisopropyl-2-dimethylamido-guanidinato) yttrium(iii): process development, film characterization and functional properties“, RSC Advances / Royal Society of Chemistry, Bd. 8, Nr. 9, S. 4987–4994, 2018, doi: 10.1039/c7ra13417g.
[6]
S. Cwik u. a., „Direct growth of MoS2 and WS2 layers by metal organic chemical vapor deposition“, Advanced materials interfaces, Bd. 5, Nr. 16, Art. Nr. 1800140, 2018, doi: 10.1002/admi.201800140.
[7]
C. Weigel, S. Sinzinger, und M. Hoffmann, „Deep etched and released microstructures in Zerodur in a fluorine-based plasma“, Microelectronic engineering, Bd. 198, S. 78–84, Okt. 2018, doi: 10.1016/j.mee.2018.07.004.
[8]
C. Weigel, A. Grewe, S. Sinzinger, und M. Hoffmann, „A microoptical sidestream cuvette based on fast passive gas exchange for capnography“, Sensors and actuators A, Bd. 276, S. 68–75, Apr. 2018, doi: 10.1016/j.sna.2018.04.022.
[9]
J. Stegner u. a., „A multi-frequency MEMS-based RF oscillator covering the range from 11.7 MHz to 1.9 GHz“, gehalten auf der 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, USA, Sep. 2018, Publiziert. doi: 10.1109/mwsym.2018.8439449.
[10]
J. Stegner u. a., „An analytical temperature-dependent design model for contour-mode MEMS resonators and oscillators verified by measurements“, Sensors, Bd. 18, Nr. 7, S. 2159–2170, Juli 2018, doi: 10.3390/s18072159.
[11]
J. Stegner u. a., „Design and implementation of a MEMS-based RF oscillator on a unique silicon-ceramic composite substrate“, in 2018 11th German Microwave Conference (GeMiC 2018), Freiburg im Breisgau, 2018, S. 71–74. doi: 10.23919/gemic.2018.8335031.
[12]
S. Günther, S. Si, H. D’Heer, D. Van Thourhout, und M. Hoffmann, „FDTS as dewetting coating for an electrowetting controlled silicon photonic switch“, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, Bd. 30, Nr. 23, S. 2005–2008, Okt. 2018, doi: 10.1109/lpt.2018.2874351.
[13]
M. Bichra, T. Meinecke, P. Feßer, L. Müller, M. Hoffmann, und S. Sinzinger, „Freeform characterization based on nanostructured diffraction gratings“, Applied optics, Bd. 57, Nr. 14, S. 3808–3816, Mai 2018, doi: 10.1364/ao.57.003808.
[14]
U. Stehr u. a., „Multiphysical design of compact RF modules on a silicon-ceramics substrate“, in 2018 11th German Microwave Conference (GeMiC 2018), Freiburg im Breisgau, 2018, S. 75–78. doi: 10.23919/gemic.2018.8335032.
[15]
S. Hanitsch, U. Pliquett, M. Hoffmann, und S. Sinzinger, „MEMS Needle Electrode for Impedance Spectroscopy on Cell Spheroids“, Biomedical engineering, Bd. 63, Nr. s1, Art. Nr. S333, Sep. 2018, doi: 10.1515/bmt-2018-6051.
[16]
P. Schmitt, H. Mehner, und M. Hoffmann, „A micromechanical binary counter with MEMS-based digital-to-analog converter“, in Proceedings / MDPI AG, Graz, 2018, Bd. 2, Nr. 13. doi: 10.3390/proceedings2130807.
[17]
E. Subasi u. a., „Y2O3 sol-gel passivation layer for solution-processed metal-oxide thin-film transistors“, in Mikro-Nano-Integration, Dortmund, 2018, Bd. 92, S. 62–67.
[18]
C. Bock u. a., „Effective conversion processes of metal-oxide precursors for the reduction of the conversion temperature in solution processed metal-oxide thin-film transistors“, in Mikro-Nano-Integration, Dortmund, 2018, Bd. 92, S. 81–85.
[19]
M. Hoffmann, „Vorwort“, in Mikro-Nano-Integration, Dortmund, 2018, Bd. 92.
[20]
S. Hanitsch, L. Dressler, und M. Hoffmann, „Automatisierte Testung Stimuli-sensitiver Funktionsmaterialien“, in 13. ThGOT, Thementage Grenz- und Oberflächentechnik und 11. Biomaterial-Kolloquium, Zeulenroda, 2018, Publiziert.
[21]
C. Bock, „Effective conversion processes of metal-oxide precursors for the reduction of the conversion temperature in solution processed metal-oxide thin-film“, in Micro-Nano-Integration; 7th GMM-Workshop, 2018, Publiziert.
[22]
C. Bock, „Y???O??? sol-gel passivation layer for solution-processed metal-oxide thin-film transistors“, in Micro-Nano-Integration; 7th GMM-Workshop, 2018, Publiziert.
[23]
S. Gunther u. a., „Electrowetting Controlled Non-Volatile Integrated Optical Switch“, in 2018 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), Jan. 2018, Publiziert.
2017
[1]
S. Si, L. Dittrich, und M. Hoffmann, „Low-cost fabrication of nanoimprint templates with tunable feature sizes at a constant pitch“, Microelectronic engineering, Bd. 170, S. 34–38, Feb. 2017, doi: 10.1016/j.mee.2016.12.023.
[2]
C. Weigel, M. Schulze, H. Gargouri, und M. Hoffmann, „Deep etching of Zerodur glass ceramics in a fluorine-based plasma“, Microelectronic engineering, Bd. 185–186, S. 1–8, 2017, doi: 10.1016/j.mee.2017.10.013.
[3]
S. Si und M. Hoffmann, „Consecutive imprinting performance of large area UV nanoimprint lithography using Bi-layer soft stamps in ambient atmosphere“, Microelectronic engineering, Bd. 176, Nr. Special issue, S. 62–70, 2017, doi: 10.1016/j.mee.2017.01.032.
[4]
C. Weigel, E. Markweg, L. Müller, M. Schulze, H. Gargouri, und M. Hoffmann, „A monolithic micro-optical interferometer deep etched into fused silica“, Microelectronic engineering, Bd. 174, Nr. Special issue, S. 40–45, Apr. 2017, doi: 10.1016/j.mee.2017.01.002.
[5]
S. Bohm, B. Goj, L. Dittrich, L. Dressler, und M. Hoffmann, „Material dependence of the contact behavior of oscillating microprobes: modeling and experimental evidence“, Journal of micro- and nano-manufacturing, Bd. 5, Nr. 2, Art. Nr. 021002, 2017, doi: 10.1115/1.4035619.
[6]
S. Leopold, D. Pätz, S. Sinzinger, und M. Hoffmann, „Stress-modulated tilt actuator for tunable optical prisms“, Sensors and actuators A, Bd. 266, S. 328–337, Okt. 2017, doi: 10.1016/j.sna.2017.09.021.
[7]
S. Si, L. Dittrich, und M. Hoffmann, „The NanoTuFe — Fabrication of large area periodic nanopatterns with tunable feature sizes at low cost“, Microelectronic engineering, Bd. 180, S. 71–80, Aug. 2017, doi: 10.1016/j.mee.2017.06.002.
[8]
J. F. von Pock, D. Salloch, U. Wieser, T. Hackbarth, und U. Kunze, „Identification and separation of rectifier mechanisms in Si/SiGe ballistic cross junctions“, Journal of applied physics, Bd. 121, Nr. 1, Art. Nr. 014304, 2017, doi: 10.1063/1.4973279.
[9]
J. F. von Pock, U. Wieser, und U. Kunze, „Input-current addition in closely positioned dual-stage ballistic rectifiers“, Physical review applied, Bd. 7, Nr. 4, Art. Nr. 044023, 2017, doi: 10.1103/physrevapplied.7.044023.
[10]
P. Lu, L. Müller, M. Hoffmann, und X. Chen, „Taper silicon nano-scaffold regulated compact integration of 1D nanocarbons for improved on-chip supercapacitor“, Nano energy, Bd. 41, S. 618–625, Nov. 2017, doi: 10.1016/j.nanoen.2017.10.019.
[11]
P. Lu u. a., „Ternary composite Si/TiN/MnO2 taper nanorod array for on-chip supercapacitor“, Electrochimica acta, Bd. 248, S. 397–408, 2017, doi: 10.1016/j.electacta.2017.07.162.
[12]
S. Si, L. Dittrich, und M. Hoffmann, „A fabrication process for nanopatterns shrinkage with variable sizes for large area“, in Proceedings of the 2nd World Congress on Recent Advances in Nanotechnology [ISSN: 2371-5308], Barcelona, Spain, Apr. 2017, Publiziert. doi: 10.11159/icnnfc17.129.
[13]
S. Hanitsch und M. Hoffmann, „Active pore for sensor protection: a PNIPAM based micro valve in LTCC“, in 2017 IEEE SENSORS, Glasgow, 2017, S. 1386–1388. doi: 10.1109/icsens.2017.8234338.
[14]
P. Schmitt, K. Wedrich, L. Müller, H. Mehner, und M. Hoffmann, „Design, fabrication and characterisation of a microfluidic time-temperature indicator“, in 28th Micromechanics and Microsystems Europe Workshop (MME 2017), Uppsala, 2017, Bd. 922. doi: 10.1088/1742-6596/922/1/012004.
[15]
L. Müller, M. Hoffmann, K. Maier, und A. Helwig, „Katalytische Silicium-Platin-Nanostrukturen für Niedertemperatur MEMS Wasserstoffsensoren“, in MikroSystemTechnik Kongress 2017, 2017, S. 199–202.
[16]
S. Günther u. a., „EWOD system designed for optical switching“, in IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, 2017, S. 1329–1332. doi: 10.1109/memsys.2017.7863665.
[17]
C. Dietrich, M. Hoffmann, und D. Lohmann, „Global Optimization of Fixed-Priority Real-Time Systems by RTOS-Aware Control-Flow Analysis“, ACM transactions on embedded computing systems, Bd. 16, Nr. 2, Art. Nr. 35, Jan. 2017, doi: 10.1145/2950053.
[18]
B. Goj u. a., „MEMS-basiertes Tensiometer zur Messung der Oberflächenspannung“, in MikroSystemTechnik Kongress 2017, 2017, S. 472–475.
[19]
L. Müller, H. Mehner, und M. Hoffmann, „MEMS Feldionisation-Gassensor auf Basis von Palladium-Nanostrukturen“, in MikroSystemTechnik Kongress 2017, 2017, S. 101–104.
[20]
S. Si, L. Dittrich, C. Weigel, und M. Hoffmann, „Verkleinerung periodischer nanostrukturen für NIL-Master mit einstellbaren strukturdimensionen“, in MikroSystemTechnik Kongress 2017, 2017, S. 684–687.
[21]
S. Bohm, B. Goj, L. Dittrich, L. Dressler, M. Hoffmann, und M. Imn, „Modellierung des Kontaktverhaltens oszillierender Mikrotastsysteme“, in MikroSystemTechnik Kongress 2017, 2017, S. 476–479.
[22]
M. Bichra, L. Müller, P. Feßer, M. Hoffmann, und S. Sinzinger, „Nanostrukturierte Beugungsgitter für integrierte Metrologie“, in MikroSystemTechnik Kongress 2017, 2017, S. 548–551.
[23]
S. Günther u. a., „EWOD System für optische Schalter“, in MikroSystemTechnik Kongress 2017, 2017, S. 246–249.
[24]
H. Mehner, P. Schmitt, und M. Hoffmann, „Passiver mechanischer 2-Bit Zähler zur Erfassung und Speicherung von Grenzwertüberschreitungen“, in MikroSystemTechnik Kongress 2017, 2017, S. 348–351.
[25]
K. Wedrich, H. Mehner, und M. Hoffmann, „Passiver Schock-Maximalwertsensor“, in MikroSystemTechnik Kongress 2017, 2017, S. 34–37.
[26]
P. Schmitt, K. Wedrich, und M. Hoffmann, „Autonomer Temperatur-Zeit-Integrator“, in MikroSystemTechnik Kongress 2017, 2017, S. 574–577.
[27]
S. Gropp u. a., „Silicium-keramik-verbundsubstrat für einen HF-MEMS oszillator“, in MikroSystemTechnik Kongress 2017, 2017, S. 704–707.
[28]
S. Leopold und M. Hoffmann, „Rotationsaktorik für durchstimmbare Mikroprismen durch die thermomechanische Modulation der remanenten Spannung in Aluminiumnitrid Balken“, in MikroSystemTechnik Kongress 2017, 2017, S. 139–142.
[29]
P. Lu u. a., „Silicon grass based nano functional electrodes for MEMS supercapacitors of improved energy density“, in 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, 2017, S. 1828–1831.
[30]
B. Goj, S. Bohm, L. Dittrich, L. Dressler, und M. Hoffmann, „Non-destructive material characterisation by oscillating microprobes“, in MNE 2016, Wien, 2017, Bd. 174–177.
[31]
S. Si und M. Hoffmann, „Consecutive imprinting performance of large area UV nanoimprint lithography using bi-layer soft stamps in oxygen-containing atmosphere“, in MNE 2016, Wien, 2017, Bd. 174–177.
[32]
K. Wedrich, H. Mehner, und M. Hoffmann, „Numerical model of a passive microsystem detecting and saving independent acceleration shocks“, in 28th Micromechanics and Microsystems Europe Workshop (MME 2017), Uppsala, 2017, Bd. 922. doi: 10.1088/1742-6596/922/1/012008.
[33]
H. Krömker, M. Hoffmann, und N. Huntemann, „Wissensstrukturierung für das Lernen in den Ingenieurwissenschaften“, in Technische Bildung im Spannungsfeld zwischen beruflicher und akademischer Bildung, Hamburg, 2017, S. 101–108. doi: 10.22032/dbt.39253.
[34]
C. Weigel, M. Hoffmann, und W. Schonefeld, „Fluor-basiertes Plasmatiefenätzen von Zerodur für mikrotechnische Anwendungen“, in MikroSystemTechnik Kongress 2017, 2017, S. 662–665.
[35]
S. Si, P. Fesser, A. Grewe, M. Hoffmann, und S. Sinzinger, „Multi-level diffractive lenses patterning on convex lens by soft UV nanoimprint lithography“, gehalten auf der International Conference on Nanoimprint and Nanoprint Technology (NNT 2017), Gyeongnam, 2017, Publiziert.
[36]
S. Hanitsch, M. Hoffmann, und M. Hoffmann, „Active Pore for Sensor Protection“, Proceedings of IEEE Sensors, 2017, Publiziert, [Online]. Verfügbar unter: https://publons.com/publon/46644213/
[37]
S. Si, L. Dittrich, C. Weigel, M. Hoffmann, und M. Hoffmann, „Miniaturization of periodic nanostructures for NIL masters with adjustable structure dimensions,Verkleinerung periodischer nanostrukturen für NIL-Master mit einstellbaren strukturdimensionen“, in MikroSystemTechnik Kongress 2017 „MEMS, Mikroelektronik, Systeme“, Proceedings, 2017, Publiziert. [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-85096744822&partnerID=MN8TOARS
[38]
S. Si, L. Dittrich, und M. Hoffmann, „Low-cost fabrication of large area periodic nanopatterns with tunable feature sizes using soft UV-Nanoimprint at ambient atmosphere“, gehalten auf der International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, Orlando, 2017, Publiziert.
2016
[1]
H. Mehner, L. Müller, S. Biermann, F. Hänschke, und M. Hoffmann, „Process flow to integrate nanostructures on silicon grass in surface micromachined systems“, in 27th Micromechanics and Microsystems Europe Workshop, Cork, 2016, Bd. 757, S. 1–4. doi: 10.1088/1742-6596/757/1/012022.
[2]
S. Degenhardt, Y. Cheriguen, T. Geiling, und M. Hoffmann, „Micro-Venturi injector: design, experimental and simulative examination“, in 27th Micromechanics and Microsystems Europe Workshop, Cork, 2016, Bd. 757, S. 1–6. doi: 10.1088/1742-6596/757/1/012027.
[3]
L. Müller, H. Mehner, und M. Hoffmann, „MEMS gas ionization sensor with palladium nanostructures for use at ambient pressure“, in 27th Micromechanics and Microsystems Europe Workshop, Cork, 2016, Bd. 757, S. 1–5. doi: 10.1088/1742-6596/757/1/012023.
[4]
P. Lu u. a., „Nano fabricated silicon nanorod array with titanium nitride coating for on-chip supercapacitors“, Electrochemistry communications, Bd. 70, S. 51–55, 2016, doi: 10.1016/j.elecom.2016.07.002.
[5]
F. Bunge, S. Leopold, S. Bohm, und M. Hoffmann, „Scanning micromirror for large, quasi-static 2D-deflections based on electrostatic driven rotation of a hemisphere“, Sensors and actuators A, Bd. 243, S. 159–166, 2016, doi: 10.1016/j.sna.2016.02.031.
[6]
S. Weinberger, T. T. Nguyen, R. Lecomte, Y. Cheriguen, C. Ament, und M. Hoffmann, „Linearized control of an uniaxial micromirror with electrostatic parallel-plate actuation“, Microsystem technologies, Bd. 22, Nr. 2, S. 441–447, 2016, doi: 10.1007/s00542-015-2535-2.
[7]
J. F. von Pock, D. Salloch, G. Qiao, U. Wieser, T. Hackbarth, und U. Kunze, „Quantization and anomalous structures in the conductance of Si/SiGe quantum point contacts“, Journal of applied physics, Bd. 119, Nr. 13, Art. Nr. 134306, 2016, doi: 10.1063/1.4945116.
[8]
S. Markmann u. a., „Modifying the spectral emission of a terahertz quantum cascade laser with double pulse injection seeding“, in CLEO: QELS_Fundamental Science, San Jose, Calif, 2016, Publiziert. doi: 10.1364/cleo_at.2016.jth2a.56.
[9]
B. Goj, L. Dressler, L. Dittrich, und M. Hoffmann, „Resonant Three-Dimensional Electrostatic Actuator in Silicon Technology“, in Actuator 16, Bremen, 2016, S. 327–331.
[10]
S. Gropp, M. Fischer, A. Frank, C. H. Schaeffel, J. Müller, und M. Hoffmann, „Fabrication of an RF-MEMS-switch on a hybrid Si-ceramic substrate“, in CICMT 2016, 2016, S. 118–121.
[11]
J. Stegner u. a., „Compact low phase-noise MEMS-based RF oscillator on a dedicated silicon-ceramic composite substrate“, in 2016 46th European Microwave Conference (EuMC 2016), London, 2016, S. 995–998. doi: 10.1109/eumc.2016.7824513.
[12]
J. Stegner u. a., „Hybrid-integrated RF MEMS-based reference oscillator using a silicon-ceramic composite substrate“, in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, S. 353–356. doi: 10.1109/gemic.2016.7461629.
[13]
H. Mehner, L. Müller, S. Biermann, und M. Hoffmann, „Process flow for integration silicon grass with metallic nanostructures in surface micromachined systems“, in Mikro-Nano-Integration, Duisburg, 2016, Bd. 86, S. 123–125.
[14]
L. Müller, M. Hoffmann, K. Maier, A. Helwig, und G. Müller, „Low temperature catalytic combustible hydrogen MEMS gas sensor enhanced by Si-Pt nanostructures“, in Mikro-Nano-Integration, Duisburg, 2016, Bd. 86, S. 73–76.
[15]
M. Hoffmann, K. Wedrich, P. Schmitt, H. Mehner, und R. Jurisch, „Non-electrical Sensing and Storing an Alternative to Electrical Energy Harvesting“, in Eurosensors 2016, Budapest, 2016, Bd. 168, S. 1621–1625. doi: 10.1016/j.proeng.2016.11.475.
[16]
M. Hoffmann, „Vorwort“, in Mikro-Nano-Integration, Duisburg, 2016, Bd. 86.
[17]
L. Müller, K. Maier, A. Hellwig, und M. Hoffmann, „Katalytische Silicium-Platin-Nanostrukturen für Niedertemperatur MEMS Wasserstoffsensoren“, in Mikro-Nano-Integration, Duisburg, 2016, Bd. 86.
[18]
J. Müller u. a., „Application of nanostructuring, nanomaterials and micro-nano-integration for improved components and system’s performance“, in Pan Pacific Microelectronics Symposium 2016 (PAN PAC 2016), Kohala Coast, 2016, S. 13–22. doi: 10.1109/panpacific.2016.7428387.
[19]
V. Silva Cortes u. a., „Evaluation of a multiphysical RF MEMS oscillator based on LTE receiver performance requirements“, in 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakau, 2016, Publiziert. doi: 10.1109/mikon.2016.7492025.
[20]
H. Krömker, M. Hoffmann, und N. Huntemann, „Anwendungsorientierte Fachlandkarten: Fallbeispiel Mikro-Nano-Integration“, in Anwendungsorientierung und Wissenschaftsorientierung in der Ingenieurbildung, Eindhoven, 2016, S. 36–42.
[21]
M. Fischer u. a., „Investigations of metal systems in a silicon ceramic composite substrate for electrical and thermal contacts as well as associated mounting aspects“, in CICMT 2016, 2016, S. 000107–000110. doi: 10.4071/2016cicmt-wa22.
[22]
M. Hoffmann und H. Mehner, „Energieautarke RFID-Sensoren – Messen & Speichern ohne elektrische Hilfsenergie“, gehalten auf der GMM-Workshop Energieautarke Sensorik, Renningen, 25. Februar 2016, Publiziert.
[23]
H. Mehner, C. Weise, S. Schwebke, S. Hampl, und M. Hoffmann, „Autonomer Mikrosensor zur Integration von Stoßereignissen“, gehalten auf der GMM-Workshop Energieautarke Sensorik, Renningen, 26. Februar 2016, Publiziert.
[24]
C. Weigel, M. Schneider, und M. Hoffmann, „Autonomer Sensor für den Nachweis von Sauerstoff in Verpackungen mittels natürlicher Fettsäueren“, gehalten auf der GMM-Workshop Energieautarke Sensorik, Renningen, 26. Februar 2016, Publiziert.
[25]
S. Gropp, M. Fischer, J. Müller, und M. Hoffmann, „Wetting behaviour of LTCC and glasses on nanostructured silicon
surfaces during sintering “, in Mikro-Nano-Integration, Duisburg, 2016, Bd. 86, S. 54–58.
[26]
S. Gropp, M. Fischer, L. Dittrich, B. Capraro, J. Müller, und M. Hoffmann, „Wetting behaviour of LTCC and glasses on nanostructured silicon surfaces during sintering“, gehalten auf der International MacroNano-Colloquium on the Challenges and Perspectives of Functional Nanostructures (CPFN), 2016, Publiziert.
[27]
C. Bock, „Modifying the spectral emission of a terahertz quantum cascade laser with double pulse injection seeding“, in 2016 Conference on Lasers and Electro-Optics (CLEO), 2016, Publiziert.
2015
[1]
S. Pal u. a., „Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure“, Scientific reports, Bd. 5, Art. Nr. 16812, 2015, doi: 10.1038/srep16812.
[2]
H. Mehner, C. Weise, S. Schwebke, S. Hampl, und M. Hoffmann, „A passive microsystem for detecting multiple acceleration events beyond a threshold“, Microelectronic engineering, Bd. 145, S. 104–111, 2015, doi: 10.1016/j.mee.2015.03.023.
[3]
S. Gropp, M. Fischer, L. Dittrich, B. Capraro, J. Müller, und M. Hoffmann, „Wetting behaviour of glasses on nanostructured silicon surfaces“, Journal of electrical engineering, Bd. 3, Nr. 1, S. 15–20, 2015, doi: 10.17265/2328-2223/2015.01.002.
[4]
C. Endrödy, H. Mehner, A. Grewe, und M. Hoffmann, „Linear micromechanical stepping drive for pinhole array positioning“, Journal of micromechanics and microengineering, Bd. 25, Nr. 5, Art. Nr. 055009, 2015, doi: 10.1088/0960-1317/25/5/055009.
[5]
M. Hillenbrand, R. Weiss, C. Endrödy, A. Grewe, M. Hoffmann, und S. Sinzinger, „Chromatic confocal matrix sensor with actuated pinhole arrays“, Applied optics, Bd. 54, Nr. 15, S. 4927–4936, 2015, doi: 10.1364/ao.54.004927.
[6]
B. Goj, L. Dressler, und M. Hoffmann, „Design and characterization of a resonant triaxial microprobe“, Journal of micromechanics and microengineering, Bd. 25, Nr. 12, Art. Nr. 125011, 2015, doi: 10.1088/0960-1317/25/12/125011.
[7]
C. Endrödy, H. Mehner, A. Grewe, S. Sinzinger, und M. Hoffmann, „2D stepping drive for hyperspectral systems“, Journal of micromechanics and microengineering, Bd. 25, Nr. 7, Art. Nr. 074002, 2015, doi: 10.1088/0960-1317/25/7/074002.
[8]
M. Fischer u. a., „Radio frequency microelectromechanical system-platform based on silicon-ceramic composite substrates“, Journal of microelectronics and electronic packaging, Bd. 12, Nr. 1, S. 37–42, 2015, doi: 10.4071/imaps.442.
[9]
C. Weigel, M. Schneider, J. Schmitt, M. Hoffmann, S. Kahl, und R. Jurisch, „Self-sufficient sensor for oxygen detection in packaging via radio-frequency identification“, Journal of sensors and sensor systems, Bd. 4, Nr. 1, S. 179–186, 2015, doi: 10.5194/jsss-4-179-2015.
[10]
F. Jaehnike, D. V. Pham, R. Anselmann, C. Bock, und U. Kunze, „High-quality solution-processed silicon oxide gate dielectric applied on indium oxide based thin-film transistors“, ACS applied materials & interfaces, Bd. 7, Nr. 25, S. 14011–14017, 2015, doi: 10.1021/acsami.5b03105.
[11]
S. Markmann u. a., „Spectral modification of the laser emission of a terahertz quantum cascade laser induced by broad-band double pulse injection seeding“, Applied physics letters, Bd. 107, Nr. 11, Art. Nr. 111103, 2015, doi: 10.1063/1.4930993.
[12]
C. Endrödy, H. Mehner, S. Sinzinger, und M. Hoffmann, „Zweiachsiger Mikroschrittaktor mit großem Stellweg für die Positionierung von Blenden-Arrays“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 773–776.
[13]
M. Fischer, S. Gropp, J. Nowak, R. Sommer, M. Hoffmann, und J. Muller, „RF-MEMS-platform based on silicon-ceramic-composite-substrates“, in 2015 German Microwave Conference (GeMiC 2015), Nürnberg, 2015, S. 398–401. doi: 10.1109/gemic.2015.7107837.
[14]
M. Fischer u. a., „Thermisches Verhalten von SiCer: ein innovatives Verbundsubstrat für MEMS“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 262–265.
[15]
B. Goj, L. Dressler, und M. Hoffmann, „Ein dreiachsiger, oszillierender Mikrotaster für die Koordinatenmesstechnik“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 40–43.
[16]
S. Gropp, M. Fischer, und M. Hoffmann, „Aufbau eines HF-MEMS-Schalters in einem Silicium-Keramik-Verbundsubstrat“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 665–668.
[17]
S. Gropp, A. Frank, M. Fischer, C. Schäffel, J. Müller, und M. Hoffmann, „Electrostatic parallel-plate MEMS switch on silicon-ceramic-composite-substrates“, in 2015 German Microwave Conference (GeMiC 2015), Nürnberg, 2015, S. 414–417. doi: 10.1109/gemic.2015.7107841.
[18]
S. Leopold, D. Pätz, S. Sinzinger, und M. Hoffmann, „Das Technische Auge: Dreidimensionale Abtastung des Objektraums“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 73–76.
[19]
H. Mehner, C. Weise, M. Hoffmann, S. Schwebke, und S. Hampl, „Autonomer Mikrosensor zur Integration von Stoßereignissen“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 159–162.
[20]
H. Mehner, S. Leopold, S. Schwebke, und M. Hoffmann, „Autonomer binärer Zähler für die Erfassung von Grenzwertereignissen“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 342–345.
[21]
C. Weigel, A. Grewe, und M. Hoffmann, „Design und Fertigung eines optofluidischen Messsystems zur kapnometrischen Überwachung“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 218–221.
[22]
C. Weigel, E. Markweg, und M. Hoffmann, „Monolithisch in Kieselglas integriertes Interferometer“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 138–141.
[23]
C. Weigel, M. Schneider, M. Hoffmann, S. Kahl, und R. Jurisch, „Autonomer Sensor für den Sauerstoffnachweis in Verpackungen mittels natürlicher Fettsäuren“, in MikroSystemTechnik Kongress 2015, Karlsruhe, 2015, S. 278–281.
[24]
S. Markmann u. a., „Double-pulse injection seeding of a terahertz quantum cascade laser“, in 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hongkong, 2015, Publiziert. doi: 10.1109/irmmw-thz.2015.7327478.
[25]
S. Pal u. a., „Strong coupling of intersubband resonance in a single triangular well to a THz metamaterial“, in 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015), Hongkong, 2015, Publiziert. doi: 10.1109/irmmw-thz.2015.7327816.
[26]
M. Hoffmann, F. Lukas, C. Dietrich, und D. Lohmann, „dOSEK: Maßgeschneiderte Zuverlässigkeit“, in Betriebssysteme und Echtzeit, 1. Aufl., Berlin: Springer Vieweg, Springer Fachmedien, 2015, S. 69–78. doi: 10.1007/978-3-662-48611-5_8.
[27]
D. Podoskin u. a., „Multi-technology design of an integrated MEMS-based RF oscillator using a novel silicon-ceramic compound substrate“, in 2015 German Microwave Conference (GeMiC 2015), Nürnberg, 2015, S. 406–409. doi: 10.1109/gemic.2015.7107839.
[28]
H. Mehner, S. Schwekbe, S. Leopold, und M. Hoffmann, „Micromechanical binary counter mechanism for storing off-limit conditions“, in 26th Micromechanics Europe Workshop (MME), Toledo, 2015, Publiziert.
[29]
S. Leopold, D. Paetz, S. Sinzinger, und M. Hoffmann, „The engineered eye: three-dimensional scanning of the object-space“, in 26th Micromechanics Europe Workshop (MME), Toledo, 2015, Publiziert.
[30]
H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, und O. Spinczyk, „FAIL*: An Open and Versatile Fault-Injection Framework for the Assessment of Software-Implemented Hardware Fault Tolerance“, in 11th European Dependable Computing Conference, Paris, 2015, S. 245–255. doi: 10.1109/edcc.2015.28.
[31]
C. Dietrich, M. Hoffmann, und D. Lohmann, „Globale Kontrollflussanalyse von eingebetteten Echtzeitsystemen“, in Betriebssysteme und Echtzeit, 1. Aufl., Berlin: Springer Vieweg, Springer Fachmedien, 2015, S. 128–136. doi: 10.1007/978-3-662-48611-5_14.
[32]
C. Endrödy, H. Mehner, A. Grewe, S. Sinzinger, und M. Hoffmann, „2D stepping microdrive for hyperspectral imaging“, in Smart sensors, actuators, and MEMS VII, Barcelona, 2015, Bd. 9517. doi: 10.1117/12.2178867.
[33]
S. Gropp, M. Fischer, J. Müller, und M. Hoffmann, „A hybrid SiCer substrate based on direct glass-based bonding of LTCC and silicon“, in WaferBond’15, Braunschweig, 2015, S. 21–23.
[34]
S. Hanitsch und M. Hoffmann, „Self-aligning mold for hydrogel micro casting“, Biomedical engineering, Bd. 60, Nr. S1, Art. Nr. S105, 2015.
[35]
H. Mehner, S. Schwebke, S. Leopold, und M. Hoffmann, „Passive microsensor for binary counting of numerous threshold events“, in Smart sensors, actuators, and MEMS VII, Barcelona, 2015, Bd. 9517. doi: 10.1117/12.2178726.
[36]
C. Dietrich, M. Hoffmann, und D. Lohmann, „Cross-Kernel Control-Flow--Graph Analysis for Event-Driven Real-Time Systems“, in SIGPLAN notices, Portland, 2015, Bd. 50, Nr. 5. doi: 10.1145/2670529.2754963.
[37]
H. Bartsch de Torres, R. Gade, A. Albrecht, und M. Hoffmann, „Systematic Characterization of Embossing Processes for LTCC Tapes“, Journal of microelectronics and electronic packaging, Bd. 5, Nr. 4, S. 142–149, Okt. 2015, doi: 10.4071/1551-4897-5.4.142.
[38]
M. Hoffmann, H. Mehner, und C. Weigel, „Non-electrical long-term incident storage for wireless sensors“, gehalten auf der Micro and Nano Engineering (MNE), Den Haag, 2015, Publiziert.
[39]
L. Müller, K. Maier, A. Helwig, G. Müller, und M. Hoffmann, „Low temperature catalytic combustible hydrogen MEMS gas sensor enhanced by Si-Pt nanostructures“, gehalten auf der Micro and Nano Engineering (MNE), Den Haag, 2015, Publiziert.
[40]
M. Hoffmann u. a., „Novel approaches towards highly selective self-powered gas sensors“, in Eurosensors 2015, Freiburg, Deutschland, Sep. 2015, Bd. 120, S. 623–627. doi: 10.1016/j.proeng.2015.08.752.
[41]
C. Endrödy, H. Mehner, A. Grewe, S. Sinzinger, und M. Hoffmann, „Two-dimensional stepping drive for hyperspectral systems“, in Proceedings of the 25th Micromechanics and Microsystems Europe Workshop (MME 2014), Istanbul, 2015, Publiziert.
2014
[1]
L. Müller, I. Käpplinger, S. Biermann, W. Brode, und M. Hoffmann, „Infrared emitting nanostructures for highly efficient microhotplates“, Journal of micromechanics and microengineering, Bd. 24, Nr. 3, Art. Nr. 035014, 2014, doi: 10.1088/0960-1317/24/3/035014.
[2]
S. Weinberger, T. T. Nguyen, C. Ament, und M. Hoffmann, „Quasi-static micromirror with enlarged deflection based on aluminum nitride thin film springs“, Sensors and actuators A, Bd. 210, S. 165–174, 2014, doi: 10.1016/j.sna.2014.02.017.
[3]
B. Goj, L. Dressler, und M. Hoffmann, „Semi-contact measurements of three-dimensional surfaces utilizing a resonant uniaxial microprobe“, Measurement science and technology, Bd. 25, Nr. 6, Art. Nr. 064012, 2014, doi: 10.1088/0957-0233/25/6/064012.
[4]
C. Weber, M. Oberberg, D. Weber, C. Bock, D. V. Pham, und U. Kunze, „Improved morphology and performance of solution-processed metal-oxide thin-film transistors due to a polymer based interface modifier“, Advanced materials interfaces, Bd. 1, Nr. 7, Art. Nr. 1400137, 2014, doi: 10.1002/admi.201400137.
[5]
J. Stella, M. Pohl, C. Bock, und U. Kunze, „Influence of grain orientation on the local deformation mode induced by cavitation erosion in a CuSnNi alloy“, Wear, Bd. 316, Nr. 1–2, S. 1–5, 2014, doi: 10.1016/j.wear.2014.04.010.
[6]
D. Podoskin u. a., „RF oscillators based on piezoelectric aluminium nitride MEMS resonators“, in GeMiC 2014, Aachen, 2014, Bd. 246.
[7]
B. Goj, H. Bartsch, S. Hanitsch, M. Hoffmann, und J. Müller, „Temperatur- und Feuchtesensor basierend auf planarisierten LTCC-Oberflächen“, in Mikro-Nano-Integration, Ilmenau, 2014, Bd. 81.
[8]
S. Günschmann, L. Müller, M. Fischer, M. Hoffmann, und J. Müller, „Selektive Erzeugung von Nanostrukturen auf einer Waferoberfläche zur Realisierung von optischen und mechanischen Funktionen beim Aufbau eines Echtzeitölsensors“, in Mikro-Nano-Integration, Ilmenau, 2014, Bd. 81, S. 69–74.
[9]
S. Leopold, D. Plätz, S. Sinzinger, J. Müller, und M. Hoffmann, „Hybride Integration von Silicium- und LTCC Technologie zur Herstellung verstimmbarer Zylinderlinsen“, in Mikro-Nano-Integration, Ilmenau, 2014, Bd. 81.
[10]
E. Markweg, M. Schädel, O. Brodersen, H. G. Ortlepp, M. Hoffmann, und O. Mollenhauer, „Mikrotechnische Umsetzung eines integriert optischen Michelson-Interferometers für Auflösungen im Sub-Nanometerbereich“, in Mikro-Nano-Integration, Ilmenau, 2014, Bd. 81, S. 107–111.
[11]
L. Müller u. a., „Nanostrukturen als Problemlöser: Emissionserhöhung und Interferenzvermeidung am Beispiel eines IR-basierten Fluidsensors“, in Mikro-Nano-Integration, Ilmenau, 2014, Bd. 81.
[12]
A. Grewe u. a., „Compact hyperchromatic imaging systems based on tunable optical microsystems“, in International Conference on Optical MEMS and Nanophotonics (OMN 2014), Glasgow, 2014, S. 129–130. doi: 10.1109/omn.2014.6924554.
[13]
S. Hampl, B. Leistritz, B. Saft, E. Hennig, und M. Hoffmann, „Micromechanical, vertical comb-drive-structures for the construction of an electrostatic energy harvester“, in Energieautarke Sensorik, Magdeburg, 2014, Bd. 79, S. 14–19.
[14]
E. Markweg, M. Hoffmann, M. Schädel, H.-G. Ortlepp, und O. Brodersen, „A combined fibre coupling/readout diode chip for use in integrated optical interferometry“, in Smart Systems Integration 2014, Wien, 2014, S. 533–536.
[15]
H. Mehner, C. Endrödy, und M. Hoffmann, „Linear stepping microactuator for hyperspectral systems“, in International Conference on Optical MEMS and Nanophotonics (OMN 2014), Glasgow, 2014, S. 117–118. doi: 10.1109/omn.2014.6924597.
[16]
L. Müller u. a., „Entwicklung und Optimierung mikrotechnischer Silizium- und Keramikkomponenten zur Realisierung eines Fluidiksensors“, in Sensoren und Messsysteme 2014, Nürnberg, 2014, Bd. 250.
[17]
C. Weigel, M. Schneider, M. Hoffmann, S. Kahl, und R. Jurisch, „Niedrig-Energie-Sensor für den Sauerstoffnachweis in Verpackungen mittels RFID“, in Sensoren und Messsysteme 2014, Nürnberg, 2014, Bd. 250.
[18]
N. Vorbringer-Dorozhovets, B. Goj, T. Machleidt, K.-H. Franke, M. Hoffmann, und E. Manske, „Multifunctional nanoanalytics and long-range scanning probe microscope using a nanopositioning and nanomeasuring machine“, Measurement science and technology, Bd. 25, Nr. 4, Art. Nr. 044006, 2014, doi: 10.1088/0957-0233/25/4/044006.
[19]
T. Geiling, L. Dressler, T. Welker, und M. Hoffmann, „Fine dust measurement with electrical fields: Concept of a hybrid particle detector“, in CICMT 2013, Orlando, 2014, S. 131–136.
[20]
S. Leopold u. a., „Multifunctional LTCC substrates for thermal actuation of tunable micro-lenses made of aluminum nitride membranes“, in CICMT 2013, Orlando, 2014, S. 124–130.
[21]
M. Hoffmann, C. Dietrich, und D. Lohmann, „dOSEK: A Dependable RTOS for Automotive Applications“, in IEEE 19th Pacific Rim International Symposium on Dependable Computing (PRDC), Vancouver, Mai 2014, S. 120–121. doi: 10.1109/prdc.2013.22.
[22]
E. Markweg, T. T. Nguyen, S. Weinberger, C. Ament, und M. Hoffmann, „Development of a miniaturized multisensory positioning device for laser dicing technology“, in Lasers in manufacturing 2011 (Part 2), München, 2014, Bd. 12, S. 387–395. doi: 10.1016/j.phpro.2011.03.148.
[23]
S. Hanitsch, S. Grohmann, A. Berg, J. Moje, und M. Hoffmann, „Method for testing of hydrogel sensor coatings“, Biomedical engineering, Bd. 59, S. 31–33, 2014.
[24]
M. Fischer, S. Gropp, J. Nowak, B. Capraro, M. Hoffmann, und J. Müller, „RF-MEMS-Platform based on Silicon-Ceramic-Composite-Substrates“, gehalten auf der International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, Suita, 2014, Publiziert.
[25]
D. Pätz, S. Leopold, M. Hoffmann, und S. Sinzinger, „Tunable anamorphotic imaging system based on fluidic cylindrical lenses“, in International Conference on Optical MEMS and Nanophotonics (OMN 2014), Glasgow, Okt. 2014, S. 25–26. doi: 10.1109/omn.2014.6924521.
[26]
L. Müller, I. Käpplinger, S. Biermann, W. Brode, und M. Hoffmann, „Thermal infrared emitter featuring micro-nanostructures with high emission“, in Proceedings of the 24th Micromechanics and Microsystems Europe Workshop, Espoo, 2014, Publiziert.
[27]
S. Gropp, M. Fischer, L. Dittrich, B. Capraro, J. Müller, und M. Hoffmann, „Wetting behaviour of LTCC and glasses on nanostructured silicon surfaces during sintering“, in CICMT 2014, Suita (Osaka), 2014, Publiziert.
[28]
S. Gropp, M. Fischer, und M. Hoffmann, „Wettability of silicon nanostructures by glass melts“, in MNE 2014, Lausanne, 2014, Publiziert.
[29]
M. Hoffmann, L. Müller, I. Käpplinger, S. Biermann, und W. Brode, „Highly efficient IR-emitters based on oriented nanostructures on silicon templates“, in MNE 2014, Lausanne, 2014, Publiziert.
[30]
M. Stubenrauch u. a., „BioMEMS for analysis and synthesis in life sciences“, Biomedical engineering, Bd. 59, Nr. 1, S. S127, 2014.
[31]
C. Weigel, H. Mehner, M. Schneider, und M. Hoffmann, „Passive RFID-auslesbare Sensorik für Verpackungen“, gehalten auf der Workshop Funktionalisierte Verpackungen - Mehrwert beim Kunden erzeugen, Rudolstadt, 2014, Publiziert.
[32]
S. Hanitsch u. a., „Integration of hydrogels into BioMEMS“, gehalten auf der Shaping the Future by Engineering, 2014, Publiziert.
[33]
H. Mehner, C. Weise, S. Schwebke, S. Hampl, und M. Hoffmann, „A passive microsystem for integrating acceleration loads“, in MNE 2014, Lausanne, 2014, Publiziert.
[34]
C. Weigel, L. Müller, A. Grewe, und M. Hoffmann, „Integration of nanostructured silicon for improving IR-transmission of an optical measurement cuvette“, gehalten auf der International MacroNano-Colloquium on the Challenges and Perspectives of Functional Nanostructures (CPFN), 30. Juli 2014, Publiziert.
[35]
L. Müller, I. Käpplinger, W. Brode, und M. Hoffmann, „Funktionale Nanostrukturen für hocheffiziente Infrarotemitter in der Sensortechnik“, gehalten auf der Thüringer Werkstofftag, Jena, 2014, Publiziert.
2013
[1]
S. Leopold, L. Müller, C. Kremin, und M. Hoffmann, „Online monitoring of the passivation breakthrough during deep reactive ion etching of silicon using optical plasma emission spectroscopy“, Journal of micromechanics and microengineering, Bd. 23, Nr. 7, Art. Nr. 074001, 2013, doi: 10.1088/0960-1317/23/7/074001.
[2]
S. Leopold u. a., „MOEMS tunable microlens made of aluminum nitride membranes“, Journal of micro/nanolithography, MEMS and MOEMS, Bd. 12, Nr. 2, Art. Nr. 023012, 2013, doi: 10.1117/1.jmm.12.2.023012.
[3]
H. Mehner, S. Leopold, und M. Hoffmann, „Variation of the intrinsic stress gradient in thin aluminum nitride films“, Journal of micromechanics and microengineering, Bd. 23, Nr. 9, Art. Nr. 095030, 2013, doi: 10.1088/0960-1317/23/9/095030.
[4]
B. Goj, L. Dressler, und M. Hoffmann, „Resonant biaxial nanoprobe utilized for non-contact surface measurements“, Sensors & transducers, Bd. 157, Nr. 10, S. 392–399, 2013.
[5]
B. Goj, L. Dressler, und M. Hoffmann, „Resonant probing system comprising a high accurate uniaxial nanoprobe and a new evaluation unit“, Journal of micromechanics and microengineering, Bd. 23, Nr. 9, Art. Nr. 095012, 2013, doi: 10.1088/0960-1317/23/9/095012.
[6]
L. Dittrich, C. Enrödy, und M. Hoffmann, „Mikropumpe mit elektrostatischem Direktantrieb“, in MikroSystemTechnik Kongress 2013, 2013, S. 512–515.
[7]
B. Goj, L. Dressler, und M. Hoffmann, „Resonanter berührungsloser Mikrotastkopf in Silicium-Mikromechanik“, in MikroSystemTechnik Kongress 2013, 2013, S. 253–256.
[8]
A. Grewe u. a., „Opto-mechanische Mikrosysteme zur hyperspektralen Bildgebung“, in MikroSystemTechnik Kongress 2013, 2013, S. 139–142.
[9]
S. Hampl und M. Hoffmann, „Piezoelektrische AlN-Bimorphe als niederfrequent-resonante Mikroaktoren mit großem Stellweg“, in MikroSystemTechnik Kongress 2013, 2013, S. 480–483.
[10]
S. Hampl, B. Leistritz, B. Saft, M. Hoffmann, und E. Hennig, „Ein- und mehrlagige vertikale Comb-Drive-Strukturen zur kapazitiven, niederfrequenten Energiegewinnung“, in MikroSystemTechnik Kongress 2013, 2013, S. 524–527.
[11]
S. Leopold, D. Pätz, S. Sinzinger, und M. Hoffmann, „Adaptive Mikrolinsen basierend auf Aluminiumnitrid Membranen“, in MikroSystemTechnik Kongress 2013, 2013, S. 173–176.
[12]
E. Markweg, T.-T. Nguyen, S. Weinberger, C. Ament, und M. Hoffmann, „Mikrolasertracker zur multisensorischen 3D-Koordinatenmessung“, in MikroSystemTechnik Kongress 2013, 2013, S. 468–471.
[13]
L. Müller, I. Käpplinger, S. Biermann, W. Brode, und M. Hoffmann, „Silicium-Platin Nanostrukturen für hochgradig Infrarot-emissive Oberflächen in Hotplate-Emittern“, in MikroSystemTechnik Kongress 2013, 2013, S. 87–90.
[14]
H. Mehner, S. Leopold, und M. Hoffmann, „Variation des intrinsischen Stressgradienten dünner Aluminiumnitridschichten“, in MikroSystemTechnik Kongress 2013, 2013, S. 622–625.
[15]
E. Markweg, M. Schädel, T.-T. Nguyen, O. Brodersen, C. Ament, und M. Hoffmann, „Integration of a position photodiode for a micro multi laser tracker system“, in Smartsystems integration 2013, Amsterdam, 2013, Publiziert.
[16]
B. Goj, L. Dressler, und M. Hoffmann, „Non-contact biaxial nanoprobe utilized for surface measurements of MEMS“, in Technical proceedings of the 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2013, Washington, 2013, S. 197–200.
[17]
B. Goj, L. Dressler, und M. Hoffmann, „Non-contact measurements of three-dimensional surfaces utilizing a miniaturized uniaxial nanoprobe“, in ISMTII 2013 - 11th International Symposium on Measurement Technology and Intelligent Instruments, Aachen, 2013, Publiziert.
[18]
M. Hoffmann, B. Goj, und L. Dressler, „Kontaktlose Oberflächenantastung in bis zu drei Raumrichtungen zur Vermeidung von Sticking-Effekten in der Koordinatenmesstechnik“, in 6. Kolloquium Mikroproduktion, Braunschweig, 2013, Bd. 10.
[19]
M. Hoffmann, „Selected papers from the 23rd MicroMechanics and Microsystems Europe Workshop (MME 2012): Ilmenau, Germany, September 9–12, 2012“, Journal of micromechanics and microengineering, Bd. 23, Nr. 7, Art. Nr. 070201, Juni 2013, doi: 10.1088/0960-1317/23/7/070201.
[20]
D. Laqua, S. Hampl, M. Hoffmann, und P. Husar, „Proof of concept for energy harvesting using piezoelectric microstructures for intelligent implants using eye-motion classified with the Integrated Eyetracker“, in World Congress on Medical Physics and Biomedical Engineering , Beijing, 2013, Bd. 39, S. 1397–1400. doi: 10.1007/978-3-642-29305-4_367.
[21]
S. Hanitsch und M. Hoffmann, „Test environment for hydrogels as functional sensor window“, Biomedical engineering, Bd. 58, Nr. 1, S. 693–694, 2013, doi: 10.1515/bmt-2013-4149.
[22]
S. Leopold, D. Paetz, F. Knoebber, O. Ambacher, S. Sinzinger, und M. Hoffmann, „Tunable cylindrical microlenses based on aluminum nitride membranes“, in MOEMS and miniaturized systems XII, San Francisco, California, United States, März 2013, Bd. 8616. doi: 10.1117/12.2005131.
[23]
E. Markweg und M. Hoffmann, „Optical scanners based on thermo-optical tuning of an integrated-optical waveguide mode“, in MOEMS and miniaturized systems XII, San Francisco, California, United States, März 2013, Bd. 8616. doi: 10.1117/12.2003625.
[24]
D. Pätz, S. Sinzinger, S. Leopold, und M. Hoffmann, „Imaging systems with aspherically tunable micro-optical elements“, in Applied industrial optics: spectroscopy, imaging and metrology, Arlington, Juli 2013, Publiziert. doi: 10.1364/isa.2013.itu1e.4.
[25]
S. Weinberger und M. Hoffmann, „Aluminum nitride supported 1D micromirror with static rotation angle >11°“, in MOEMS and miniaturized systems XII, San Francisco, California, United States, März 2013, Bd. 8616. doi: 10.1117/12.2002288.
[26]
A. Grewe, C. Endrödy, S. Sinzinger, und M. Hoffmann, „Advanced phase plates for confocal hyperspectral imaging systems“, in Applied industrial optics: spectroscopy, imaging and metrology, Arlington, Juli 2013, Publiziert. doi: 10.1364/aio.2013.aw1b.2.
[27]
E. Markweg u. a., „Integration of a position photodiode for a micro laser tracker system“, in Smart Systems Integration 2013, SSI 2013, 2013, Publiziert. [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-85064536892&partnerID=MN8TOARS
[28]
F. Shao u. a., „Interaction Mechanisms of Ammonia and Tin Oxide: A Combined Analysis Using Single Nanowire Devices and DFT Calculations“, The Journal of Physical Chemistry C [ISSN: 1932-7447], Bd. 117, Nr. 7, S. 35203526, Jan. 2013, doi: 10.1021/jp3085342.
[29]
M. Hoffmann, C. Dietrich, und D. Lohmann, „Failure by design: influence of the RTOS interface on memory fault resilience“, in Informatik 2013, 2013, Bd. 220, S. 2562–2576.
[30]
B. Podoskin, K. Brueckner, K. Blau, H. Mehner, M. Hoffmann, und M. A. Hein, „Piezoelectric aluminum nitride MEMS resonators for RF oscillator integrated circuits“, gehalten auf der Micromechanics Europe Workshop, Espoo, 2013, Publiziert.
[31]
N. Vorbringer-Dorozhovets, B. Goj, T. Machleidt, K.-H. Franke, M. Hoffmann, und E. Manske, „Multifunctional nanoanalytics and long-range SPM based on NPM machine“, gehalten auf der Seminar on Nanoscale Calibration Standards and Methods, Paris, 2013, Publiziert.
2012
[1]
C. Bock, S. Weingart, E. Karaissaridis, U. Kunze, F. Speck, und T. Seyller, „Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions“, Nanotechnology, Bd. 23, Nr. 39, Art. Nr. 395203, 2012, doi: 10.1088/0957-4484/23/39/395203.
[2]
H. Bartsch, A. Albrecht, M. Hoffmann, und J. Müller, „Microforming process for embossing of LTCC tapes“, Journal of micromechanics and microengineering, Bd. 22, Nr. 1, Art. Nr. 015004, 2012, doi: 10.1088/0960-1317/22/1/015004.
[3]
K. Xu u. a., „Atomic layer deposition of HfO2 thin films employing a heteroleptic hafnium precursor“, Chemical vapor deposition, Bd. 18, Nr. 1–3, S. 27–35, 2012, doi: 10.1002/cvde.201106934.
[4]
K. Xu u. a., „Atomic layer deposition of Gd2O3 and Dy2O3: a study of the ALD characteristics and structural and electrical properties“, Chemistry of materials, Bd. 24, Nr. 4, S. 651–658, 2012, doi: 10.1021/cm2020862.
[5]
A. Ganczarczyk u. a., „Nanosession: Low-dimensional transport and ballistic effects“, in Frontiers in electronic materials, Aachen, 2012, S. 281–289. doi: 10.1002/9783527667703.ch63.
[6]
J. F. von Pock, D. Salloch, U. Wieser, U. Kunze, und T. Hackbarth, „Elimination of hot-electron thermopower from ballistic rectification using a dual-cross device“, in Frontiers in electronic materials, Aachen, 2012, S. 445–446. doi: 10.1002/9783527667703.ch63.
[7]
M. Szelong, U. Wieser, M. H. Knop, U. Kunze, D. Reuter, und A. Wieck, „Hall effect in an asymmetric ballistic cross junction“, in Frontiers in electronic materials, Aachen, 2012, S. 443–444. doi: 10.1002/9783527667703.ch63.
[8]
L. Dittrich, C. Endrödy, und M. Hoffmann, „Dimensionierung und Technologiekonzept für eine neuartige Mikropumpe ohne bewegliche mechanische Teile“, in Mikro-Nano-Integration, Berlin, 2012, Bd. 74.
[9]
L. Müller und M. Hoffmann, „Silicium-Metall Nanostrukturen mit ultrahoher Absorption im infraroten Strahlungsbereich“, in Mikro-Nano-Integration, Berlin, 2012, Bd. 74.
[10]
L. Dittrich, C. Endrödy, und M. Hoffmann, „Design and technology concept for a novel micropump coping without moving mechanical components“, in 23rd Micromechanics and Microsystems Europe Workshop (MME), Ilmenau, 2012, Publiziert.
[11]
T. Geiling, S. Leopold, Y. Cheriguen, und M. Hoffmann, „Fine dust measurement with electrical fields concept for a capacitive setup“, in 23rd Micromechanics and Microsystems Europe Workshop (MME), Ilmenau, 2012, Publiziert.
[12]
B. Goj und M. Hoffmann, „Design of a biaxial nanoprobe utilizing Matlab Simulink“, in 23rd Micromechanics and Microsystems Europe Workshop (MME), Ilmenau, 2012, Publiziert.
[13]
B. Goj, N. Vorbringer-Dorzhovets, C. Wystup, E. Manske, und M. Hoffmann, „Electromagnetic changer for AFM-tips“, in 23rd Micromechanics and Microsystems Europe Workshop (MME), Ilmenau, 2012, Publiziert.
[14]
S. Hampl und M. Hoffmann, „Piezoelektrischer AlN-Bimorph als resonanter Mikroaktor“, in Mikrosystemtechnik Chemnitz ’12, Chemnitz, 2012, S. 75–78.
[15]
R. Hebel, L. Dittrich, und M. Hoffmann, „On the influence of laser cutting manufacturing tolerances on the spring rate of machined tubular springs“, in 23rd Micromechanics and Microsystems Europe Workshop (MME), Ilmenau, 2012, Publiziert.
[16]
S. Leopold, C. Kremin, und M. Hoffmann, „Controlled silicon grass generation using optical plasma emission spectroscopy“, in 23rd Micromechanics and Microsystems Europe Workshop (MME), Ilmenau, 2012, Publiziert.
[17]
H. Mehner, K. Brueckner, D. Karolewski, S. Michael, M. Hein, und M. Hoffmann, „Stress controlled piezoelectric AlN-MEMS-Resonators with molybdenum electrodes for GHz applications“, in 23rd Micromechanics and Microsystems Europe Workshop (MME), Ilmenau, 2012, Publiziert.
[18]
S. Weinberger, Y. Cheriguen, und M. Hoffmann, „Static large-angle micromirror with aluminum nitride springs“, in 23rd Micromechanics and Microsystems Europe Workshop (MME), Ilmenau, 2012, Publiziert.
[19]
E. Markweg, M. Hillenbrand, S. Sinzinger, und M. Hoffmann, „Planar plano-convex microlens in silica using ICP-CVD and DRIE“, in Optical systems design 2012, Barcelona, Spain, Dez. 2012, Bd. 8550. doi: 10.1117/12.981266.
[20]
L. Dittrich und M. Hoffmann, „Sorting and processing station for segmented flow applications based on electrowetting on dielectrics“, gehalten auf der Chemical and Biological Micro Laboratory Technology, Elgersburg, 2012, Publiziert.
[21]
L. Dittrich, C. Enrödy, und M. Hoffmann, „Resonant electrostatic actuation of water on closed lyophobic microstructures“, gehalten auf der International Meeting on Electrowetting, Athen, 21. Juni 2012, Publiziert.
[22]
M. Hillenbrand, E. Markweg, M. Hoffmann, und S. Sinzinger, „Integrated hybrid GRIN lenses“, DGaO-Proceedings, Bd. 113, Art. Nr. P5, 2012, [Online]. Verfügbar unter: https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00026463/DGAO_113_2012_p5.pdf
[23]
S. Leopold u. a., „Needlelike nanostructures on aluminum nitride membranes for dynamic lenses using thermo-capillarity“, gehalten auf der International Conference on Micro and Nano Engineering, Toulouse, 2012, Publiziert.
2011
[1]
D. Salloch, U. Wieser, U. Kunze, und T. Hackbarth, „Separation of the inertial-ballistic signal from hot-electron thermopower in an injection-type ballistic rectifier“, in Physics of semiconductors, 2011, Bd. 1399, S. 321–322. doi: 10.1063/1.3666383.
[2]
H. Witte, M. Stubenrauch, U. Fröber, R. Fischer, D. Voges, und M. Hoffmann, „Integration of 3-D cell cultures in fluidic microsystems for biological screenings“, Engineering in life sciences, Bd. 11, Nr. 2, S. 140–147, 2011, doi: 10.1002/elsc.201000045.
[3]
S. Leopold, C. Kremin, A. Ulbrich, S. Krischok, und M. Hoffmann, „Formation of silicon grass: nanomasking by carbon clusters in cyclic deep reactive ion etching“, Journal of vacuum science & technology B, Bd. 29, Nr. 1, S. 0110021–0110027, 2011, doi: 10.1116/1.3521490.
[4]
A. Sánchez-Ferrer u. a., „Liquid-crystalline elastomer microvalve for microfluidics“, Advanced materials, Bd. 23, Nr. 39, S. 4526–4530, 2011, doi: 10.1002/adma.201102277.
[5]
N. Heidrich, S. Hampl, D. Laqua, V. Cimalla, M. Hoffmann, und P. Husar, „Biocompatible piezoelectric microstructures utilizing eye motion for self-sufficient IOP-sensor devices“, in Biomedical engineering, Freiburg, 2011, Bd. 56, Nr. s1. doi: 10.22032/dbt.40010.
[6]
D. Bekermann u. a., „MOCVD of ZnO films from bis(ketoiminato)Zn(II) precursors: structure, morphology and optical properties“, Chemical vapor deposition, Bd. 17, S. 155–161, 2011, doi: 10.1002/cvde.201006898.
[7]
T. Burkhardt u. a., „Smarte adaptiv-optische Mikrosysteme: Aufbautechnologie und thermomechanische Charakterisierung“, in MikroSystemTechnik Kongress 2011, Darmstadt, 2011, Publiziert.
[8]
L. Dittrich und M. Hoffmann, „Virtuelle Membranaktoren auf Nanostrukturen in Mikropumpen“, in Mikro-Nano-Integration, Stuttgart, 2011, Bd. 68.
[9]
B. Goj, L. Dittrich, G. Dummstorff, T. Erbe, und M. Hoffmann, „Entwurf und Herstellung hybrider dreiachsiger Sensormodulkonzepte“, in MikroSystemTechnik Kongress 2011, Darmstadt, 2011, Publiziert.
[10]
S. Hampl u. a., „AlN-basierte piezoelektrische Mikrogeneratoren zur Energieversorgung miniaturisierter Implantate“, in MikroSystemTechnik Kongress 2011, Darmstadt, 2011, Publiziert.
[11]
M. Hoffmann u. a., „Mikro-Nano-Integration in der Sensorik: Nanostrukturen als neue Option“, in 10. Dresdner Sensor-Symposium, Dresden, 2011, Bd. 43, S. 127–129. [Online]. Verfügbar unter: https://www.ama-science.org/proceedings/details/592
[12]
M. Hoffmann u. a., „Integration von nanostrukturierten Materialien in mikrofluidische Systeme: Perspektiven und Herausforderungen“, in 7. Deutsches BioSensor Symposium, Heilbad Heiligenstadt, 2011, S. 25–26.
[13]
S. Leopold, T. Polster, T. Geiling, und M. Hoffmann, „Erzeugung nadelförmiger Nanostrukturen aus Aluminiumnitrid (AlN) durch reaktives Plasmaätzen“, in Mikro-Nano-Integration, Stuttgart, 2011, Bd. 68.
[14]
L. Müller, C. Kremin, und M. Hoffmann, „Mittels Nanostrukturierung optimierte Bimorph-Biegeaktoren großer Auslenkung“, in MikroSystemTechnik Kongress 2011, Darmstadt, 2011, Publiziert.
[15]
T. Polster, S. Leopold, und M. Hoffmann, „Untersuchungen zur Nanoporosität von AlN Membranen“, in Mikro-Nano-Integration, Stuttgart, 2011, Bd. 68.
[16]
T. Polster, H. Mehner, A. Oeder, M. Hoffmann, und S. Sinzinger, „Optisch gepulste Mikroplasmaquelle für die Integration von Nanotomographie in eine Nanomessmaschine“, in MikroSystemTechnik Kongress 2011, Darmstadt, 2011, Publiziert.
[17]
S. Weinberger, E. Markweg, T. T. Nguyen, M. Hoffmann, und C. Ament, „Positionserfassung von flexiblen Roboterarmen mit einem optischen Mikrotrackersystem“, in MikroSystemTechnik Kongress 2011, Darmstadt, 2011, Publiziert.
[18]
S. Leopold u. a., „Tunable refractive beam steering using aluminum nitride thermal actuators“, in MEMS Adaptive Optics V, San Francisco, California, United States, Feb. 2011, Bd. 7931. doi: 10.1117/12.874826.
[19]
M. Schneider und M. Hoffmann, „Non-electrical-power temperature-time integrating sensor for RFID based on microfluidics“, in Smart Sensors, Actuators, and MEMS V, Apr. 2011, Bd. 8066. doi: 10.1117/12.886768.
[20]
S. Hampl, V. Cimalla, T. Polster, und M. Hoffmann, „AlN-based piezoelectric bimorph microgenerator utilizing low-level non-resonant excitation“, in Smart Sensors, Actuators, and MEMS V, 2011, Bd. 8066. doi: 10.1117/12.886881.
[21]
T. Polster, S. Leopold, und M. Hoffmann, „Airborne particle generation for optical tweezers by thermo-mechanical membrane actuators“, in Smart Sensors, Actuators, and MEMS V, 2011, Bd. 8066. doi: 10.1117/12.886727.
[22]
M. Hoffmann u. a., „All quantum dot based femtosecond VECSEL“, in Vertical external cavity surface emitting lasers (VECSELs), San Francisco, Calif., Feb. 2011, Bd. 7919. doi: 10.1117/12.873731.
[23]
D. Pätz, S. Leopold, S. Sinzinger, M. Hoffmann, F. Knöbber, und O. Ambacher, „Scannende Compound-Kamera zur hochauflösenden 3D-Objektabtastung“, in Einladung zur 112. Jahrestagung vom 14. Juni bis 18. Juni 2011 und zur satzungsgemäßen ordentlichen Mitgliederversammlung der DGaO am 17. Juni 2011 in Ilmenau / Thüringen, Ilmenau, 2011, S. 102.
[24]
B. Goj und M. Hoffmann, „Design of a Triaxial Resonant Nanoprobe Fully Integrated in a Silicon Substrate“, in 22nd Micromechanics and Microsystems Europe Workshop (MME 2011), Tönsberg, 2011, Publiziert.
2010
[1]
S. Weingart, C. Bock, U. Kunze, K. V. Emtsev, T. Seyller, und L. Ley, „Influence of the growth conditions of epitaxial graphene on the film topography and the electron transport properties“, Physica E, Bd. 42, Nr. 4, S. 687–690, 2010, doi: 10.1016/j.physe.2009.11.006.
[2]
S. Noor u. a., „Structural and magnetic investigations of Fe and Fe3Si as CEO-grown spin aligning layers on spin LEDs“, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2010, Bd. 6. Reihe, Bd 45, Nr. 3. [Online]. Verfügbar unter: https://www.dpg-verhandlungen.de/year/2010/conference/regensburg/downloads
[3]
H. Bartsch de Torres, C. Rensch, M. Fischer, A. Schober, M. Hoffmann, und J. Müller, „Thick film flow sensor for biological microsystems“, Sensors and actuators A, Bd. 160, Nr. 1–2, S. 109–115, 2010, doi: 10.1016/j.sna.2010.04.010.
[4]
B. Goj u. a., „Radially magnetized permanent magnets for miniaturized low power magnetic valves“, in Actuator 10, Bremen, 2010, S. 373–376.
[5]
C. Kremin, S. Leopold, und M. Hoffmann, „Untersuchung zur selbst-organisierten Nanomaskierung in zyklischen Tiefenätzprozessen für die reproduzierbare Erzeugung von nanostrukturiertem Silicium“, in Mikro-Nano-Integration, Erfurt, 2010, Bd. 63.
[6]
S. Leopold, T. Polster, D. Pätz, und M. Hoffmann, „Einsatz von nanokristallinem Aluminiumnitrid (AlN) in mikrosystemtechnischen Aktorkonzepten“, in Mikro-Nano-Integration, Erfurt, 2010, Bd. 63.
[7]
T. Polster und M. Hoffmann, „Aluminiumnitrid Dünnschicht-Nembranen: Nanokristalline Materialstruktur als Basis hoher mechanischer Stabilität“, in Mikro-Nano-Integration, Erfurt, 2010, Bd. 63.
[8]
M. Stubenrauch, M. Schwandt, C. Kremin, S. Hecht, und M. Hoffmann, „Statische und dynamische Prüfung von Silizium-Nano-Klettverschlüssen“, in Mikro-Nano-Integration, Erfurt, 2010, Bd. 63.
[9]
B. Goj, L. Dittrich, T. Erbe, S. Rosenbaum, und M. Hoffmann, „High precision test device for calibration of miniaturized three-dimensional magnetic sensors“, in Mechanika 2010, Kaunas, 2010, S. 166–171.
[10]
D. Pätz, S. Leopold, F. Knöbber, S. Sinzinger, M. Hoffmann, und O. Ambacher, „Tunable compound eye cameras“, in Micro-optics 2010, Brüssel, Belgien, Apr. 2010, Bd. 7716. doi: 10.1117/12.854532.
[11]
B. Pawlowski u. a., „SiCer: ein innovativer substratwerkstoff für MEMS“, Keramische Zeitschrift, Bd. 62, Nr. 4, S. 259–263, 2010.
[12]
M. Hoffmann, „Nanostrukturierte Materialien in Mikrosystemen: Silicium-Gras als Werkstoff“, in Thüringer Werkstofftag 2010, Ilmenau, 2010, S. 27–32.
[13]
S. Leopold u. a., „Structuring techniques of aluminum nitride (AlN) masks for deep reactive ion etching (DRIE) of silicon“, in MME2010 21st Micromechanics and Microsystems Europe Workshop, Enschede, 2010, Publiziert.
[14]
T. Mache, C. Jakob, L. Dittrich, und M. Hoffmann, „Batch-taugliche Fertigungsansätze für funktionenintegrierende feinwerktechnische Systemkomponenten mit maßgeschneiderten Eigenschaften“, in Thüringer Werkstofftag 2010, Ilmenau, 2010, S. 79–84.
[15]
C. Schilling, U. Fröber, R. Fischer, M. Stubenrauch, M. Hoffmann, und H. Witte, „Werkstoffmix für BioMEMS: Interaktion von Bio-Mikrosystemen mit deren Werkstoffen“, in Thüringer Werkstofftag 2010, Ilmenau, 2010, S. 109–114.
[16]
S. Weinberger, O. Jakovlev, C. H. Winkelmann, E. Markweg, und M. Hoffmann, „Development of a novel micromirror with high static rotation angle for measurement applications“, in MME2010 21st Micromechanics and Microsystems Europe Workshop, Enschede, 2010, Publiziert.
[17]
M. Waegner, A. Haußmann, M. Hoffmann, G. Suchaneck, G. Gerlach, und L. M. Eng, „Investigation of nano-patterned PZT thin films by piezoresponse force microscopy“, in 3rd Electronics System Integration Technology Conference ESTC, Berlin, 2010, Publiziert. doi: 10.1109/estc.2010.5642928.
[18]
M. Stubenrauch u. a., „Ansiedlung adhärenter Zellen in Bio-Mikrosystemen“, gehalten auf der Microtechnology for Chemistry and Biology Laboratories, Elgersburg, Winter 2010, Publiziert.
[19]
D. Laqua u. a., „Konzeption eines implantierbaren RF-Transmitters mit autarker Energieversorgung zum intraokularen Druckmonitoring“, Biomedical engineering, Bd. 55, Nr. S1, 2010, doi: 10.22032/dbt.40022.
[20]
U. Fröber, M. Stubenrauch, D. Voges, S. V. Lehmann, M. Hoffmann, und H. Witte, „Miniaturisierte Evaluierungsumgebung für Zellen in 3-dimensionalen Scaffolds“, gehalten auf der Microtechnology for Chemistry and Biology Laboratories, Elgersburg, Winter 2010, Publiziert.
[21]
M. Fischer, H. Bartsch, B. Pawlowski, S. Barth, M. Hoffmann, und J. Müller, „SiCer - ein innovativer Substratwerkstoff für MEMS“, in Thüringer Werkstofftag 2010, Ilmenau, 2010, S. 6.
2009
[1]
S. Weingart, C. Bock, U. Kunze, F. Speck, T. Seyller, und L. Ley, „Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions“, Applied physics letters, Bd. 95, Nr. 26, Art. Nr. 262101, 2009, doi: 10.1063/1.3276560.
[2]
A. P. Milanov u. a., „Lanthanide oxide thin films by metalorganic chemical vapor deposition employing volatile Guanidinate precursors“, Chemistry of materials, Bd. 21, Nr. 22, S. 5443–5455, 2009, doi: 10.1021/cm902123m.
[3]
A. P. Milanov u. a., „Rare-earth based oxide and nitride thin films employing volatile homoleptic guanidinate precursors“, in EuroCVD 17/CVD 17, Vienna, 2009, Bd. 25, 8, S. 143–150. doi: 10.1149/1.3207585.
[4]
M. Fischer u. a., „Silicon on Ceramics: A New Integration Concept for Silicon Devices to LTCC“, Journal of microelectronics and electronic packaging, Bd. 6, Nr. 1, S. 1–5, 2009, doi: 10.4071/1551-4897-6.1.1.
[5]
R. Perrone, H. Bartsch de Torres, M. Hoffmann, M. Mach, und J. Müller, „Miniaturized Embossed Low Resistance Fine Line Coils in LTCC“, Journal of microelectronics and electronic packaging, Bd. 6, Nr. 1, S. 42–48, 2009, doi: 10.4071/1551-4897-6.1.42.
[6]
A. Sánchez-Ferrer, T. Fischl, M. Stubenrauch, H. Wurmus, M. Hoffmann, und H. Finkelmann, „Photo-Crosslinked Side-Chain Liquid-Crystalline Elastomers for Microsystems“, Macromolecular chemistry and physics, Bd. 210, Nr. 20, S. 1671–1677, 2009, doi: 10.1002/macp.200900308.
[7]
M. Stubenrauch, U. Fröber, D. Voges, C. Schilling, M. Hoffmann, und H. Witte, „A modular BioMEMS platform for new procedures and experiments in tissue engineering“, Journal of Micromechanics and Microengineering [ISSN: 0960-1317], Bd. 19, Nr. 7, Art. Nr. 074013, 2009, doi: 10.1088/0960-1317/19/7/074013.
[8]
M. Hoffmann, „Anwendungen nanostrukturierter Grenzflächen in Mikrosystemen am Beispiel von Si-Gras und Herausforderungen für die Forschung“, in Proceedings / Mikrosystemtechnik Kongress 2009, Berlin, 2009, Publiziert.
[9]
M. Hoffmann und C. Wystup, „Der Nanoklettverschluss als Verbindungselement in der Nanopositionier- und Nanomesstechnik“, in Proceedings / Mikrosystemtechnik Kongress 2009, Berlin, 2009, Publiziert.
[10]
C. Kremin, S. Leopold, M. Stubenrauch, und M. Hoffmann, „Variation von nanostrukturiertem Silicium aus DRIE-Tiefenätzprozessen zur Integration in Si-basierte MEMS“, in Mikro-Nano-Integration, Seeheim, 2009, Bd. 60.
[11]
T. Mache, C. Jakob, L. Dittrich, und M. Hoffmann, „Herstellung von funktionsintegrierenden Galvanowerkstoffen mit maßgeschneiderten Eigenschaften für Mikrodirektantriebe“, in Proceedings / Mikrosystemtechnik Kongress 2009, Berlin, 2009, Publiziert.
[12]
L. Dittrich, T. Mache, und M. Hoffmann, „Batch-taugliche Fertigungsansätze für feinwerktechnische Systemkomponenten“, in Mikrosystemtechnik, Chemnitz, 2009, Publiziert.
[13]
M. Stubenrauch, U. Fröber, M. Fischer, C. Kremin, H. Witte, und M. Hoffmann, „Klebe- und klemmfreies Anschlusskonzept für mikrofluidische Systeme mittels nanostrukturierter Oberflächen“, in Mikro-Nano-Integration, Seeheim, 2009, Bd. 60.
[14]
M. Stubenrauch, M. Schwandt, S. Hecht, C. Kremin, M. Fischer, und M. Hoffmann, „Zuverlässigkeitsaspekte bei Nanoklettverschlüssen“, in Mikro-Nano-Integration, Seeheim, 2009, Bd. 60.
[15]
S. Weinberger, D. Lukman, und M. Hoffmann, „Thermooptisch verstimmbare Bragg-Reflektoren aus neuartigen organisch-/ anorganischen Schichtsystemen“, in Proceedings / Mikrosystemtechnik Kongress 2009, Berlin, 2009, Publiziert.
[16]
T. Polster und M. Hoffmann, „Aluminum nitride based 3D, piezoelectric, tactile sensor“, Procedia chemistry, Bd. 1, Nr. 1, S. 144–147, 2009, doi: 10.1016/j.proche.2009.07.036.
[17]
M. Stubenrauch, M. Schwandt, S. Hecht, und M. Hoffmann, „Reliability aspects of mechanical interlocking bond interfaces with nanostructured silicon grass“, in Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Rom, 2009, S. 167–169.
[18]
H. Bartsch de Torres, C. Rensch, T. Thelemann, J. Müller, und M. Hoffmann, „Fully Integrated Bridge-Type Anemometer in LTCC-Based Microfluidic Systems“, März 2009, Publiziert. doi: 10.4028/www.scientific.net/ast.54.401.
[19]
U. Fröber, M. Stubenrauch, D. Voges, M. Hoffmann, und H. Witte, „Bio-microsystem for cell cultivation and manipulation and its peripherals“, in 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerpen, Feb. 2009, Bd. 22, S. 2384–2387. doi: 10.1007/978-3-540-89208-3_572.
[20]
U. Fröber u. a., „Integration of scaffolds into bio-Microsystems for experiments in tissue
engineering“, in Smart Systems Integration 2009 , Brüssel, 2009, S. 436–439.
[21]
U. Fröber u. a., „Mikrosysteme für die Entwicklung von 3D-Biointerfaces auf Hydrogel-Basis“, in Oberflächentechnik für die Praxis, Friedrichroda, 2009, S. 252–256.
[22]
C. Kremin, S. Leopold, und M. Hoffmann, „Investigation of self-organized nanomasking in cyclic deep silicon etching fort the reproducible generation of nanostructured silicon“, gehalten auf der Nanotech Europe, Berlin, 2009, Publiziert.
[23]
M. Stubenrauch u. a., „Fertigungsinnovation: Kletten statt Kleben“, gehalten auf der Materialica Surface Kongress, München, 14. Oktober 2009, Publiziert.
[24]
M. Stubenrauch, U. Fröber, L. Te Boekhorst, D. Voges, M. Hoffmann, und H. Witte, „How to connect 23 tubes to a 4x4 mm2 microchip?“, gehalten auf der Micromechanics Europe Workshop, Toulose, 2009, Publiziert.
2008
[1]
M. Wiemann, A. Cetinkaya, U. Wieser, U. Kunze, D. Reuter, und A. Wieck, „Hot-electron bend resistance in a ballistic GaAs/AlGaAs cross junction“, Physica E, Bd. 40, Nr. 6, S. 2128–2130, 2008, doi: 10.1016/j.physe.2007.10.025.
[2]
U. Wieser, M. H. Knop, U. Kunze, D. Reuter, und A. Wieck, „Magneto-ballistic effects in non-centrosymmetric GaAs/AlGaAs cross junctions“, Physica E, Bd. 40, Nr. 6, S. 2179–2181, 2008, doi: 10.1016/j.physe.2007.10.115.
[3]
C. Bock, D. V. Pham, U. Kunze, D. Käfer, G. Witte, und C. Wöll, „Influence of contact metals on the performance and morphology of pentacene bottom-contact field-effect transistors“, Physica E, Bd. 40, Nr. 6, S. 2107–2109, 2008, doi: 10.1016/j.physe.2007.09.194.
[4]
J. T. Schumacher, A. Grodrian, C. Kremin, M. Hoffmann, und J. Metze, „Hydrophobic coating of microfluidic chips structured by SU-8 polymer for segmented flow operation“, Journal of micromechanics and microengineering, Bd. 18, Nr. 5, Art. Nr. 055019, 2008, doi: 10.1088/0960-1317/18/5/055019.
[5]
H. Bartsch de Torres u. a., „A new method for wafer level integration of silicon components on LTCC“, in Smart systems integration 2008, Barcelona, 2008, S. 392–394.
[6]
L. Dittrich, M. Kallenbach, und M. Hoffmann, „MiniMags – microtechnical challenges miniaturizing electro-magnetic valves“, in Smart systems integration 2008, Barcelona, 2008, S. 412–414.
[7]
L. Dittrich, M. Kallenbach, B. Bonitz, T. Mache, und M. Hoffmann, „Heterogeneous actuator integration for miniaturized low-power magnetic valves“, in Actuator 08, Bremen, 2008, S. 145–148.
[8]
L. Dittrich, M. Kallenbach, B. Bonitz, T. Mache, und M. Hoffmann, „Batch-capable fabrication approach for a highly efficient miniaturized magnetic valve“, in Prospects in mechanical engineering, Ilmenau, 2008, Bd. 53, S. 207–208. [Online]. Verfügbar unter: https://www.db-thueringen.de/receive/dbt_mods_00018126
[9]
M. Hoffmann, M. Kallenbach, K. Neumann, M. Herrig, V. Zöppig, und L. Dittrich, „Resonant ultra low-power valve with high nominal width“, in Actuator 08, Bremen, 2008, S. 1026–1029.
[10]
M. Kallenbach, C. Mühlke, und M. Hoffmann, „Microsystems-engineering solutions for inductive components with high ampacity“, in Smart systems integration 2008, Barcelona, 2008, S. 447–450.
[11]
C. Kremin, M. Stubenrauch, und M. Hoffmann, „Variations of nanostructured silicon in deep reactive ion etching processes“, in 19th MicroMechanics Europe Workshop (MME 2008), Aachen, 2008, S. 335–338.
[12]
R. A. Perrone, H. Bartsch de Torres, M. Hoffmann, M. Mach, und J. Müller, „Filling methods for embossed low resistance fine line coils in LTCC“, in Proceedings and exhibitor presentations / (CICMT 2008), München, 2008, S. 229–234.
[13]
T. Polster, A. Albrecht, und M. Hoffmann, „Thin free standing AlN membranes: mechanical stable and flexible structural material for MEMS devices“, in 19th MicroMechanics Europe Workshop (MME 2008), Aachen, 2008, S. 85–88.
[14]
M. Stubenrauch, U. Fröber, D. Voges, C. Schilling, H. Witte, und M. Hoffmann, „Bio-MEMS with integrated polymer scaffolds for tissue engineering“, in 19th MicroMechanics Europe Workshop (MME 2008), Aachen, 2008, S. 65–68.
[15]
T. Polster, A. Albrecht, S. Weinberger, und M. Hoffmann, „Aluminium nitride a smart multifunctional material for MEMS“, in Prospects in mechanical engineering, Ilmenau, 2008, Bd. 53, S. 137–138. [Online]. Verfügbar unter: https://www.db-thueringen.de/receive/dbt_mods_00018066
[16]
D. Voges u. a., „Konfigurierbare Bio-Mikrosysteme für die In-Vitro-Zellkultivierung“, in Technische Systeme für die Lebenswissenschaften, Heilbad Heiligenstadt, 2008, Publiziert.
[17]
C. Kremin u. a., „Integrierter mikrofluidischer Chips aus SU-8 zur elektrischen und optischen Manipulation biologischer Proben“, in Technische Systeme für die Lebenswissenschaften, Heilbad Heiligenstadt, 2008, S. 209–214.
[18]
M. Fischer u. a., „Silicon on ceramics: A new integration concept for silicon devices to LTCC“, in Proceedings and exhibitor presentations / (CICMT 2008), München, 2008, S. 264–268.
[19]
M. Fischer u. a., „Silicon on ceramics: A new concept for micro-nano-integration on wafer level“, in Nanotechnology 2008 , Boston, 2008, S. 157–160. [Online]. Verfügbar unter: https://briefs.techconnect.org/wp-content/volumes/Nanotech2008v3/pdf/1267.pdf
[20]
H. Bartsch De Torres, R. Gade, A. Albrecht, und M. Hoffmann, „Systematic characterisation of embossing processes for LTCC-tapes“, in Proceedings and exhibitor presentations / (CICMT 2008), München, 2008, S. 19–26.
[21]
C. Wystup, M. Stubenrauch, und M. Hoffmann, „‘Black Silicon’ adjustment chips - a nanointerface for the conditioning of multifunctional AFM scanning tips“, in Prospects in mechanical engineering, Ilmenau, 2008, Bd. 53, S. 209–210.
[22]
H. Witte, M. Hoffmann, K. Liefeith, M. Schnabelrauch, und K. Jandt, „ECM analogous biointerfaces for biomedical and biophysical applications“, in Prospects in mechanical engineering, Ilmenau, 2008, Bd. 53, S. 159–160. [Online]. Verfügbar unter: https://www.db-thueringen.de/receive/dbt_mods_00018043
[23]
T. Geiling, H. Bartsch de Torres, R. Perrone, J. Müller, und M. Hoffmann, „Coil design for a low-loss inductive proximity sensor in LTCC“, gehalten auf der Ibero-American Congress on Sensors (IBERSENSOR), Sao Paulo, 2008, Publiziert.
[24]
U. Fröber u. a., „Bio-MEMS for Water Analytics“, in Prospects in mechanical engineering, Ilmenau, 2008, Bd. 53, S. 211–212. [Online]. Verfügbar unter: https://www.db-thueringen.de/receive/dbt_mods_00018129
[25]
U. Fröber u. a., „Biomikrosysteme zur Kultivierung von Indikatororganismen für Umwelt-Monitoring, Gefahrstoffdetektion und Zytodiagnostik“, gehalten auf der Workshop Chemische und biologische Mikrolabortechnik, Ilmenau/Elgersburg, 28. Februar 2008, Publiziert.
[26]
M. Stubenrauch, U. Fröber, D. Voges, C. Schilling, H. Witte, und M. Hoffmann, „Bio-MEMS for new methods in tissue engineering“, gehalten auf der European Symposium on Biomedical Engineering, Chania, 19. Juni 2008, Publiziert.
[27]
A. Keppler u. a., „Chemical modification and radiation induced degradation of the photoresist SU-8“, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Darmstadt, 2008, Bd. 43, Nr. 1.
2007
[1]
E. Fritz, U. Wieser, U. Kunze, und T. Hackbarth, „Ballistic rectification in four-terminal fork-shaped Si/SiGe junctions“, in Physics of semiconductors, 2007, Bd. 893, S. 717–718. doi: 10.1063/1.2730091.
[2]
U. Wieser, M. H. Knop, P. Koop, U. Kunze, D. Reuter, und A. Wieck, „Enhanced rectification efficiency in cascaded ballistic GaAs/AlGaAs rectifiers“, in Physics of semiconductors, 2007, Bd. 893, S. 719–720. doi: 10.1063/1.2730092.
[3]
C. Bock, D. V. Pham, U. Kunze, D. Käfer, G. Witte, und A. Terfort, „Influence of anthracene-2-thiol treatment on the device parameters of pentacene bottom-contact transistors“, Applied physics letters, Bd. 91, Nr. 5, Art. Nr. 052110, 2007, doi: 10.1063/1.2767235.
[4]
D. V. Pham u. a., „Reduced sheet resistance in pentacene field-effect transistors using thiol-modified electrodes“, in Physics of semiconductors, 2007, Bd. 893, S. 363–364. doi: 10.1063/1.2729917.
[5]
V. Cimalla u. a., „Suspended nanowire web“, Applied physics letters, Bd. 90, Nr. 10, Art. Nr. 101504, 2007, doi: 10.1063/1.2711753.
[6]
R. B. Gentemann, D. Teufer, K. Temmen, und M. Hoffmann, „3D-fibre channels in silicon by electrical breakdown: New opportunities for optical fibre alignment and microfluidics“, AEÜ : International journal of electronics and communications, Bd. 61, Nr. 3, S. 172–176, 2007, doi: 10.1016/j.aeue.2006.12.001.
[7]
M. Stubenrauch, M. Fischer, C. Kremin, M. Hoffmann, und J. Müller, „Bonding of silicon with filled and unfilled polymers based on black silicon“, Micro & nano letters, Bd. 2, Nr. 1, S. 6–8, 2007, doi: 10.1049/mnl:20065064.
[8]
A. Albrecht u. a., „Integration of functional liquid crystalline elastomers in the microtechnics“, in Smart Systems Integration 2007, Paris, 2007, S. 403–406.
[9]
H. Bartsch de Torres und M. Hoffmann, „Embossing of microfluidic structures in ceramic multilayers“, in Smart Systems Integration 2007, Paris, 2007, S. 423–425.
[10]
M. Fischer, M. Stubenrauch, M. Hintz, M. Hoffmann, und J. Müller, „Bonding of ceramic and silicon: new options and applications“, in Smart Systems Integration 2007, Paris, 2007, S. 477–479.
[11]
M. Hoffmann, P. Meier, und M. Lang, „A compliant self-actuated device for minimally invasive surgery“, in Smart Systems Integration 2007, Paris, 2007, S. 557–559.
[12]
M. Kallenbach, H. Bartsch de Torres, M. Hintz, und M. Hoffmann, „High-inductive small-size microcoils with high ampacity“, in Smart Systems Integration 2007, Paris, 2007, S. 505–507.
[13]
T. Polster u. a., „AlN as a piezoelectric material for integrated micro and nano sensors on silicon“, in Smart Systems Integration 2007, Paris, 2007, S. 249–255.
[14]
M. Stubenrauch, M. Fischer, C. Kremin, A. Albrecht, und M. Hoffmann, „Black Silicon as a smart structure for the bonding of polymers with silicon“, in Smart Systems Integration 2007, Paris, 2007, S. 161–166.
[15]
A. Albrecht, T. Polster, S. Weinberger, und M. Hoffmann, „Dünne piezoelektrische AlN Monomorph-Membranen“, in Mikrosystemtechnik Chemnitz ’07, Chemnitz, 2007, S. 53–58.
[16]
K. Tonisch u. a., „Growth of silicon nanowires on UV-structurable glass using self-organized nucleation centres“, Physica E, Bd. 38, Nr. 1–2, S. 40–43, 2007, doi: 10.1016/j.physe.2007.01.001.
[17]
K. Tonisch u. a., „Nanowire-based electromechanical biomimetic sensor“, Physica E, Bd. 37, Nr. 1–2, S. 208–211, 2007, doi: 10.1016/j.physe.2006.06.002.
[18]
S. Michael, S. Hering, G. Holzer, T. Polster, M. Hoffmann, und A. Albrecht, „Parameter Identification on Wafer Level of Membrane Structures“, in EuroSime 2007, Londonn, 2007, Publiziert. doi: 10.1109/esime.2007.360042.
[19]
T. Polster, A. Albrecht, und M. Hoffmann, „Aluminiumnitrid als piezoelektrisches Material für MEMS“, in Mikrosystemtechnik-Kongress 2007, Dresden, 2007, S. 553–556.
[20]
M. Stubenrauch u. a., „´Black Silicon´ - einstellbare Nanostrukturen mit neuen Applikationsfeldern“, in Oberflächentechnik für die Praxis, Erfurt, 2007, S. 220–221.
[21]
S. Hecht und M. Hoffmann, „Reliability of Black Silicon for MEMS packaging“, in MicroNanoReliability 2007, Berlin, 2007, Bd. 6.
[22]
H. Bartsch de Torres, M. Fischer, M. Klett, C. Augspurger, A. Schober, und M. Hoffmann, „Funktionskeramiken für biotechnologische Anwendungen“, in Oberflächentechnik für die Praxis, Erfurt, 2007, S. 333–334.
[23]
H. B. de Torres, M. Hoffmann, und M. Hoffmann, „Embossing of microfluidic structures in ceramic multilayer“, in Smart Systems Integration 2007 - European Conference and Exhibition on Integration Issues of Miniaturized Systems: MEMS, MOEMS, ICs and Electronic Components, SSI 2007, 2007, Publiziert. [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-85064657026&partnerID=MN8TOARS
[24]
M. Fischer, H. Bartsch de Torres, M. Stubenrauch, J. Müller, und M. Hoffmann, „Bonding of LTCC and silicon substrates using adapted black silicon“, gehalten auf der Conference on Wafer Bonding for MEMS Technologies and Wafer Level Integration, Halle (Saale), 2007, Publiziert.
2006
[1]
M. H. Knop, U. Wieser, U. Kunze, D. Reuter, und A. Wieck, „Ballistic rectification in an asymmetric mesoscopic cross junction“, Applied physics letters, Bd. 88, Nr. 8, Art. Nr. 082110, 2006, doi: 10.1063/1.2179618.
[2]
S. A. Poenariu, U. Wieser, U. Kunze, und T. Hackbarth, „Quantized conductance and bend resistance in an asymmetric Si/SiGe cross junction“, Physica E, Bd. 32, Nr. 1–2, S. 539–542, 2006, doi: 10.1016/j.physe.2005.12.118.
[3]
C. Bock, D.-V. Pham, U. Kunze, D. Käfer, G. Witte, und C. Wöll, „Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes“, Journal of applied physics, Bd. 100, Nr. 11, Art. Nr. 114517, 2006, doi: 10.1063/1.2400507.
[4]
M. H. Knop, U. Wieser, U. Kunze, D. Reuter, und A. Wieck, „Nonlocal versus local rectification in multiply connected electron waveguide structures“, Physica E, Bd. 32, Nr. 1–2, S. 536–538, 2006, doi: 10.1016/j.physe.2005.12.117.
[5]
U. Wieser, M. H. Knop, M. Richter, U. Kunze, D. Reuter, und A. Wieck, „Ballistic transport and rectification in mesoscopic GaAs/AlGaAs cross junctions“, Phase transitions, Bd. 79, Nr. 9–10, S. 755–764, 2006, doi: 10.1080/01411590600961321.
[6]
T. Fischl, A. Albrecht, H. Wurmus, M. Hoffmann, M. Stubenrauch, und A. Sánchez-Ferrer, „Flüssigkristalline Elastomere für die Mikrotechnik“, Kunststoffe Kunststoffe international, Bd. 96, Nr. 10, S. 30–34, 2006, [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-33750394302&partnerID=MN8TOARS
[7]
M. Fischer u. a., „Self organization and properties of black silicon“, in 51. Internationales Wissenschaftliches Kolloquium (IWK), Ilmenau, 2006, Bd. 51, S. 237–238.
[8]
K. Tonisch u. a., „Nanowire-based electromechanical biomimetic sensor“, gehalten auf der E-MRS Spring Meeting, Nizza, 2006, Publiziert.
2005
[1]
U. Wieser, S. A. Poenariu, U. Kunze, und T. Hackbarth, „Phonon-induced breakdown of negative bend resistance in an asymmetric Si/SiGe cross junction“, Applied physics letters, Bd. 87, Nr. 25, Art. Nr. 252114, 2005, doi: 10.1063/1.2150268.
[2]
M. H. Knop u. a., „Preparation of electron waveguide devices on GaAs/AlGaAs using negative-tone resist calixarene“, Semiconductor science and technology, Bd. 20, Nr. 8, S. 814–818, 2005, doi: 10.1088/0268-1242/20/8/031.
2004
[1]
K.-H. Schmidt, C. Bock, M. Versen, U. Kunze, D. Reuter, und A. Wieck, „Capacitance and tunneling spectroscopy of InAs quantum dots“, Journal of applied physics, Bd. 95, Nr. 10, S. 5715–5721, 2004, doi: 10.1063/1.1703827.
[2]
D. Nüsse, M. Hoffmann, und E. Voges, „Megasonic enhanced KOH etching for {110} silicon bulk micromachining“, in SPIE Proceedings [ISSN: 0277-786X], Philadelphia, Okt. 2004, Publiziert. doi: 10.1117/12.570220.
2003
[1]
C. Bock, K.-H. Schmidt, U. Kunze, S. Malzer, und G. Döhler, „Valence-band structure of self-assembled InAs quantum dots studied by capacitance spectroscopy“, Applied physics letters, Bd. 82, Nr. 13, S. 2071–2073, 2003, doi: 10.1063/1.1564288.
[2]
D. Reuter, P. Schafmeister, P. Kailuweit, C. Bock, U. Kunze, und A. Wieck, „Electrical and optical characterization of InAs quantum dots grown on ion implanted GaAs(100)“, Physica status solidi C, Bd. 0, Nr. 4, S. 1109–1112, 2003, doi: 10.1002/pssc.200303007.
[3]
C. Bock, C. Bronkowski, K.-H. Schmidt, U. Kunze, S. Malzer, und G. Döhler, „Capacitance spectroscopy of electron and hole energy levels in InAs self-assembled quantum dots“, in Physics of semiconductors 2002, 2003, Bd. 171, S. 232–232.
[4]
M. Hoffmann, D. Nüsse, und E. Voges, „An electrostatically actuated 1 x 2 moving-fiber switch“, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, Bd. 15, Nr. 1, S. 39–41, 2003, doi: 10.1109/lpt.2002.805806.
[5]
E. Voges und M. Hoffmann, „An Overview of the Workshop ‚Optical MEMS and Integrated Optics‘, Dortmund, 11th - 12th June 2001“, Microsystem technologies, Bd. 9, Nr. 5, S. 285–285, 2003, doi: 10.1007/s00542-002-0232-4.
[6]
M. Hoffmann, P. Kopka, D. Nüsse, und E. I. Voges, „Fibre-optical MEMS switches based on bulk silicon micromachining“, Microsystem technologies, Bd. 9, Nr. 5, S. 299–303, 2003, doi: 10.1007/s00542-002-0237-z.
[7]
V. T. Dolgopolov u. a., „Remote-doping scattering and the local field corrections in the 2D electron system in a modulation-doped Si/SiGe quantum well“, Superlattices and microstructures, Bd. 33, Nr. 5–6, S. 271–278, 2003, doi: 10.1016/j.spmi.2004.02.003.
2002
[1]
K.-H. Schmidt u. a., „Electronic structure in InAs self assembled quantum dots“, Materials science & engineering B, Bd. 88, Nr. 2–3, S. 238–242, 2002, doi: 10.1016/s0921-5107(01)00873-x.
[2]
C. Bock, K.-H. Schmidt, U. Kunze, V. Khorenko, S. Malzer, und G. Döhler, „Electronic structure of self-assembled InAs quantum dots“, Physica E, Bd. 13, Nr. 2–4, S. 208–211, 2002, doi: 10.1016/s1386-9477(01)00521-5.
[3]
M. Hoffmann und E. Voges, „Bulk silicon micromachining for MEMS in optical communication systems“, Journal of micromechanics and microengineering, Bd. 12, Nr. 4, S. 349–360, 2002, doi: 10.1088/0960-1317/12/4/301.
[4]
M. Hoffmann, D. Nüsse, und E. Voges, „Electrostatically actuated moving-fibre switch“, in IEEE/LEOS International Conference on Optical MEMS , Lugano, 2002, S. 111–112. doi: 10.1109/omems.2002.1031468.
[5]
U. Wieser, U. Kunze, K. E. Ismail, und J. O. Chu, „Fabrication of Si/SiGe quantum point contacts by electron-beam lithography and shallow wet-chemical etching“, Physica E, Bd. 13, Nr. 2–4, S. 1047–1050, 2002, doi: 10.1016/s1386-9477(02)00299-0.
[6]
U. Wieser, U. Kunze, K. E. Ismail, und J. O. Chu, „Quantum-ballistic transport in an etch-defined Si/SiGe quantum point contact“, Applied physics letters, Bd. 81, Nr. 9, S. 1726–1728, 2002, doi: 10.1063/1.1503157.
[7]
V. V. Khorenko, S. Malzer, C. Bock, K. H. Schmidt, G. H. D�hler, und C. Bock, „Electroluminescence of Self-Assembled InAs Quantum Dots in p-i-n Diodes“, physica status solidi (b) [ISSN: 0370-1972], Bd. 224, Nr. 1, S. 129132, Aug. 2002, doi: 10.1002/1521-3951(200103)224:1<129::aid-pssb129>3.0.co;2-s.
2001
[1]
V. Khorenko, S. Malzer, C. Bock, K.-H. Schmidt, und G. Döhler, „Electroluminescence of self-assembled InAs quantum dots in p-i-n diodes“, Physica status solidi B, Bd. 224, Nr. 1, S. 129–132, 2001, [Online]. Verfügbar unter: http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?fforward=http://dx.doi.org/10.1002/1521-3951(200103)224:1%3C129::AID-PSSB129%3E3.0.CO
[2]
K.-H. Schmidt u. a., „Quanten-confined Stark-Effekt in InAs-Quantenpunkten“, Kleinheubacher Berichte, Bd. 44, S. 514–521, 2001.
[3]
M. Versen, K.-H. Schmidt, C. Bock, U. Kunze, D. Reuter, und A. Wieck, „Coulomb-blockiertes Tunneln durch einzelne InAs-Quantenpunkte in einem Sattelpunktpotential“, Kleinheubacher Berichte, Bd. 44, S. 484–489, 2001.
[4]
M. Versen, K.-H. Schmidt, C. Bock, D. Reuter, A. Wieck, und U. Kunze, „Single-electron tunneling through individual InAs quantum dots within a saddle point potential“, Physica status solidi B, Bd. 224, Nr. 3, S. 669–673, 2001, doi: 10.1002/(sici)1521-3951(200104)224:3<669::aid-pssb669>3.0.co;2-q.
[5]
C. Bock, K.-H. Schmidt, M. Versen, U. Kunze, D. Reuter, und A. Wieck, „Vertikales Tunneln durch InAs-Quantenpunkte“, Kleinheubacher Berichte, Bd. 44, S. 490–497, 2001.
[6]
M. Hoffmann, D. Nüsse, und E. Voges, „Electrostatic parallel-plate actuators with large deflections for use in optical moving-fibre switches“, Journal of micromechanics and microengineering, Bd. 11, Nr. 4, S. 323–328, 2001, doi: 10.1088/0960-1317/11/4/306.
[7]
I. Snigireva u. a., „Holographic X-ray optical elements: transition between refraction and diffraction“, Nuclear instruments & methods in physics research A, Bd. 467–468, S. 982–985, 2001, doi: 10.1016/s0168-9002(01)00556-3.
[8]
M. Hoffmann und E. Voges, „New silicon-based fibre assemblies for applications in integrated optics and optical MEMS“, Applied physics B, Bd. 73, Nr. 5–6, S. 629–633, 2001, doi: 10.1007/s003400100720.
[9]
V. V. Aristov u. a., „Silicon planar parabolic lenses“, in Advances in X-ray optics, San Diego, 2001, Bd. 4145, S. 285–293. doi: 10.1117/12.411648.
[10]
V. V. Aristov u. a., „Silicon planar refractive lenses with the optimized design“, Nuclear instruments & methods in physics research A, Bd. 470, Nr. 1–2, S. 131–134, 2001, doi: 10.1016/s0168-9002(01)01024-5.
2000
[1]
K.-H. Schmidt, M. Versen, C. Bock, U. Kunze, D. Reuter, und A. Wieck, „In-plane and perpendicular tunneling through InAs quantum dots“, Physica E, Bd. 7, Nr. 3–4, S. 425–429, 2000, doi: 10.1016/s1386-9477(99)00354-9.
[2]
K.-H. Schmidt, M. Versen, C. Bock, U. Kunze, D. Reuter, und A. Wieck, „Topographie und elektrische Eigenschaften von InAs-Quantenpunkten“, Materials science and engineering technology, Bd. 31, Nr. 9, S. 837–844, 2000, doi: 10.1002/1521-4052(200009)31:9<837::aid-mawe837>3.0.co;2-t.
[3]
P. Kopka, M. Hoffmann, und E. Voges, „Coupled U-shaped cantilever actuators for 1×4 and 2×2 optical fibre switches“, Journal of micromechanics and microengineering, Bd. 10, Nr. 2, S. 260–264, 2000, doi: 10.1088/0960-1317/10/2/326.
[4]
M. Hoffmann, S. Dickhut, und E. Voges, „Fiber ribbon alignment structures based on rhombus-shaped channels in silicon“, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, Bd. 12, Nr. 7, S. 828–830, 2000, doi: 10.1109/68.853514.
[5]
P. Kopka, M. Hoffmann, und E. Voges, „Latching-type 2x2 and 1x4 fiber-optic switches“, in MOEMS and miniaturized systems, Santa Clara, 2000, Bd. 4178, S. 44–50. doi: 10.1117/12.396488.
[6]
V. V. Aristov u. a., „X-ray focusing by planar parabolic refractive lenses made of silicon“, Optics Communications [ISSN: 0030-4018], Bd. 177, Nr. 1–6, S. 3338, 2000, doi: 10.1016/s0030-4018(00)00580-0.
[7]
V. V. Aristov u. a., „X-ray refractive planar lens with minimized absorption“, Applied physics letters, Bd. 77, Nr. 24, S. 4058–4060, 2000, doi: 10.1063/1.1332401.
[8]
U. Wieser, D. Iamundo, U. Kunze, T. Hackbarth, und U. König, „Nanoscale patterning of Si/SiGe heterostructures by electron-beam lithography and selective wet-chemical etching“, Semiconductor science and technology, Bd. 15, Nr. 8, S. 862–867, 2000, doi: 10.1088/0268-1242/15/8/313.
[9]
M. Hoffmann, P. Kopka, und E. Voges, „Lensless latching-type fiber switches using silicon micromachined actuators“, in Optical Fiber Communication Conference (OFC) 2000, Baltimore, 2000, Bd. 37, S. 250–252. doi: 10.1109/ofc.2000.868580.
1999
[1]
M. Hoffmann, P. Kopka, und E. Voges, „All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining“, IEEE journal of selected topics in quantum electronics / Institute of Electrical and Electronics Engineers, Bd. 5, Nr. 1, S. 46–51, 1999, doi: 10.1109/2944.748104.
[2]
M. Hoffmann, P. Kopka, und E. Voges, „Bistable micromechanical fiber-optic switches on silicon with thermal actuators“, Sensors and actuators A, Bd. 78, Nr. 1, S. 28–35, 1999, doi: 10.1016/s0924-4247(99)00200-9.
[3]
M. Hoffmann, P. Kopka, T. Groß, und E. Voges, „Optical fibre switches based on full wafer silicon micromachining“, Journal of micromechanics and microengineering, Bd. 9, Nr. 2, S. 151–155, 1999, doi: 10.1088/0960-1317/9/2/311.
1998
[1]
M. Hoffmann, P. Kopka, T. Groß, und E. Voges, „All-silicon bistable micromechanical fibre switches“, Electronics letters, Bd. 34, Nr. 2, S. 207–208, 1998, doi: 10.1049/el:19980145.
[2]
M. Hoffmann, P. Kopka, und E. Voges, „Bistable micromechanical fiber-optic switches on silicon“, in Digest 1998 IEEE/LEOS summer topical meetings, Monterey, 1998, S. 31–32. doi: 10.1109/leosst.1998.689717.
[3]
M. Hoffmann, P. Kopka, und E. Voges, „Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state“, Journal of lightwave technology, Bd. 16, Nr. 3, S. 395–400, 1998, doi: 10.1109/50.661366.
[4]
U. Wieser, S. Skaberna, und U. Kunze, „Self-adjusting formation of a lateral confinement potential in Si/SiGe heterostructures with compensating pn layers“, Superlattices and microstructures, Bd. 23, Nr. 5, S. 981–984, 1998, doi: 10.1006/spmi.1996.0347.
[5]
P. Kopka, M. Hoffmann, und E. Voges, „Micromechanical fiber switch arrays on silicon“, in 24th European Conference on Optical Communication. ECOC ’98 , Madrid, 1998, S. 39–40. doi: 10.1109/ecoc.1998.732424.
1997
[1]
M. Hoffmann, P. Kopka, und E. Voges, „Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems“, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, Bd. 9, Nr. 9, S. 1238–1240, 1997, doi: 10.1109/68.618490.
[2]
S. Skaberna, U. Wieser, und U. Kunze, „Creation of a lateral potential modulation at the slope of an etched heterostructure with compensating PN layers“, in Quantum Devices and Circuits, Alexandria, 1997, S. 57–62.
1996
[1]
E. Voges und M. Hoffmann, „Optical waveguides on silicon combined with micromechanical structures“, in Digest IEEE/LEOS 1996 summer topical meetings, Keystone, 1996, S. 69–70. doi: 10.1109/leosst.1996.540798.
1994
[1]
M. Hoffmann, H. Bezzaoui, und E. Voges, „Micromechanical cantilever resonators with integrated optical interrogation“, Sensors and actuators A, Bd. 44, Nr. 1, S. 71–75, 1994, doi: 10.1016/0924-4247(94)00776-4.