Prof. Dr.-Ing. Nils Pohl

Adresse:
Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Integrierte Systeme
Postfach ID 15
Universitätsstraße 150
D-44801 Bochum
Raum:
ID 1/439
Telefon:
(+49)(0)234 / 32 - 26495
E-Mail:
nils.pohl(at)rub.de
Google Scholar Profil

LEBENSLAUF
- Professor für Integrierte Systeme, Ruhr-Universität Bochum
seit 06/2016 - Teamleiter für Chip Design und stellvertretender Leiter der Abteilung für Integrierte Schaltungen und Sensorsysteme (ISS) am Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR in Wachtberg bei Bonn
seit 06/2016 - Professor für Integrierte Hochfrequenzschaltungen, Ruhr-Universität Bochum
09/2015 - 05/2016 - Abteilungsleiter am Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR
Abteilung für Millimeterwellenradar und Höchstfrequenzsensoren (MHS) in Wachtberg bei Bonn
02/2013 - 05/2016 - Juniorprofessor für Integrierte Systeme, Ruhr-Universität Bochum
02/2011 - 08/2015 - Promotion in der Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum
2006 - 2010, Thema “Systemkonzepte und SiGe-Bipolarschaltungen für ein 80 GHz-Radarsystem hoher Bandbreite”, Abschluss in 02/2010 als Doktor-Ingenieur - Studium der Elektrotechnik und Informationstechnik, Ruhr-Universität Bochum
FORSCHUNG
- Integrierte Schaltungen zur Frequenzsynthese und für die Radartechnik
- Schaltungen für mehrkanalige Messsysteme (MIMO-Radar)
- Höchstfrequente Schaltungen bis 300 GHz und darüber hinaus
- Hochauflösende und miniaturisierte Radarsysteme
- Direktive und integrierte Antennen
- Radarsignalverarbeitung
FACHVERBÄNDE
- European Microwave Association (EuMA)
Mitglied seit 2015 - Deutsches Terahertz-Zentrum e.V.
Mitglied seit 2015 - Technical Committee: MTT-16 Microwave Systems Committee
Mitglied seit 2013 - VDE-ITG-Fachausschusses 7.3 „Mikrowellentechnik“ (Informationstechnische Gesellschaft im Verband der Elektrotechnik Elektronik Informationstechnik e.V.)
Mitglied seit 2013 - U.R.S.I. (International Union of Radio Science)
Mitglied der Kommission A: Elektromagnetische Metrologie seit 2012 - Deutscher Hochschulverband (DHV)
Mitglied seit 2011 - Institute of Electrical and Electronics Engineers (IEEE), sowie in der Microwave Theory and Techniques Society (MTT-S) und der Solid-State Circuits Society (SSCS)
Senior Member seit 2014
Member seit 2011
Student Member seit 2007 - Verband der Elektrotechnik Elektronik Informationstechnik e.V. (VDE) und Informationstechnische Gesellschaft (ITG)
Mitglied seit 2001
TAGUNGEN UND KONFERENZEN
- IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes
TPC chair 2019 - IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
Track Chair für Analog and Mixed-Signal Circuits 2016, 2017 - European Conference on Synthetic Aperture Radar (EUSAR)
Program Committee seit 2016 - IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)
Reviewer seit 2015 - IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems (SIRF)
Chair 2018
TPC Chair 2017
Executive Committee seit 2015 - International Microwave Symposium (IMS)
Technical Program Review Committee 2016
Student Design Competition Organizer seit 2014
Workshop Organizer 2014, 2019 - International Solid-State Circuits Conference (ISSCC)
Student Research Preview Reviewer 2014 und 2015 - IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)
Chair des Wireless Subcommittee seit 2016
Mitglied des Technical Program Committee im Wireless Subcommittee seit 2013 - European Microwave Week (EUMW)
TPC Chair European Radar Conference (EuRAD) 2017
Technical Program Committee 2015,2016,2017,2018
Local Organizing Committee 2013
Reviewer seit 2013 - IEEE Topical Conference on Wireless Sensors and Sensor Networks (WISNet)
Reviewer seit 2013 - German Microwave Conference (GEMIC)
Co-Chair und TPC Chair 2016
Reviewer seit 2012
PREISE UND EHRUNGEN
- 06/2018: Outstanding young engineer award der IEEE MTT-S
for outstanding early career contributions to the microwave profession, especially to millimeter-wave integrated circuits and radar techniques. - 09/2017: International IHP "Wolfgang Mehr" Fellowship Award 2017
Verliehen für die Forschung im Bereich der Hochfrequenzelektronik. - 01/2015: Demo Award der IEEE Radio Wireless Week
Verliehen für die Demo „Compact High Resolution Radar at 80 GHz and 140 GHz“ - 05/2013: Karl-Arnold-Preis
Verliehen durch die Nordrhein-Westfälische Akademie der Wissenschaften und der Künste am 15. Mai 2013 als alleiniger Preisträger - 10/2012: EUMIC (European Microwave Integrated Circuits Conference) Prize
Verliehen für den Beitrag “A 24GHz Wideband Single-Channel SiGe Bipolar Transceiver Chip for Monostatic FMCW Radar Systems” zusammen mit weiteren Mitautoren - 11/2009: EEEfCom Innovationspreis
Verliehen für „Advances in Industrial Radar Level Measurements“ im Konsortium
2025
[1]
S. Clochiatti et al., “Low-noise Resonant Tunneling Diode Terahertz Detector,” IEEE transactions on terahertz science and technology, vol. 15, no. 1, pp. 107–119, 2025, doi: 10.1109/tthz.2024.3505599.
[2]
T. Körner et al., “Simultaneous Localization and Mapping (SLAM) for Room Exploration Using Ultrawideband Millimeterwave FMCW Radar,” IEEE journal of microwaves, vol. 5, no. 2, pp. 344–355, 2025, doi: 10.1109/jmw.2025.3541789.
[3]
P. Stadler, J. Romstadt, M. A. Yildirim , T. Welling, K. Aufinger, and N. Pohl, “An E-Band Quadrupler Utilizing a 45°Polyphase Filter for Improved Harmonic Rejection,” in 2025 IEEE Radio and Wireless Symposium (RWS), San Juan, Mar. 2025, doi: 10.1109/rws62086.2025.10905006.
[4]
T. T. Braun, J. Romstadt, S. Hansen, C. Schweer, and N. Pohl, “Two Differential Wideband SIW-to-RWG Transitions for Thin Single Layer Substrates With Additional Tapering for D-Band Applications,” in 2025 IEEE Radio and Wireless Symposium (RWS), San Juan, Mar. 2025, doi: 10.1109/rws62086.2025.10904833.
[5]
K. Dausien, F. Schenkel, J. Altholz, L. Piotrowsky, N. Pohl, and J. Barowski, “An Overview on Millimeterwave FMCW Radar Techniques for Precise Ranging and Material Imaging,” in 2025 International Conference on Mobile and Miniaturized Terahertz Systems (ICMMTS), Dubai , Mar. 2025, doi: 10.1109/icmmts62835.2025.10925997.
2024
[1]
L. Polzin, M. van Delden, N. Pohl, H. Rücker, and T. Musch, “Design and Phase Noise Measurements of an Ultrafast Dual-Modulus Prescaler in 130 nm SiGe:C BiCMOS,” IEEE transactions on microwave theory and techniques, vol. 72, no. 1, 2024, doi: 10.1109/tmtt.2023.3329699.
[2]
D. Starke et al., “A 360 GHz fully integrated differential signal source with 106.7 GHz continuous tuning range in 90 nm SiGe:C BiCMOS,” IEEE transactions on microwave theory and techniques, vol. 2024, Feb. 2024, doi: 10.1109/tmtt.2024.3356610.
[3]
P. Stadler, H. Papurcu, J. Romstadt, and N. Pohl, “A D-Band 28nm CMOS-Bulk Power Amplifier with 12.8dBm Output Power and 31.3GHz 3dB Bandwidth,” in 2024 IEEE 24th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Antonio, Feb. 2024, doi: 10.1109/sirf59913.2024.10438624.
[4]
T. T. Braun, J. Schöpfel, A. J. Marquez Maldera, and N. Pohl, “Overcoming the relative bandwidth limitations of single VCO frequency synthesizers by implementing a novel PLL architecture,” International journal of microwave and wireless technologies, vol. 2024, Feb. 2024, doi: 10.1017/s1759078723001484.
[5]
J. Bott and N. Pohl, “A Multipurpose D-Band Vector Modulator for FMCW and PMCW Sensing Applications in 130 nm SiGe,” IEEE transactions on microwave theory and techniques, vol. 72, no. 8, pp. 4579–4589, 2024, doi: 10.1109/tmtt.2024.3365945.
[6]
P. Kwiatkowski, A. Orth, and N. Pohl, “Combining 77–81 GHz MIMO FMCW radar with frequency-steered antennas: a case study for 3D target localization,” International journal of microwave and wireless technologies, vol. 16, no. 5, pp. 819–827, Mar. 2024, doi: 10.1017/s1759078724000254.
[7]
D. Starke, S. Thomas, C. Bredendiek, K. Aufinger, and N. Pohl, “Investigation of coupling mechanisms for efficient high power and low phase noise E-band quadrature VCOs in 130nm SiGe,” IEEE journal of microwaves, vol. 2024, Mar. 2024, doi: 10.1109/jmw.2024.3370395.
[8]
M. A. Yildirim , J. Bott, F. Vogelsang, C. Bredendiek, K. Aufinger, and N. Pohl, “A SiGe Based 60 GHz Signal Source MMIC for MIMO Radar Application,” in Proceedings of the 2024 15th German Microwave Conference, Duisburg, Mar. 2024, pp. 97–100, doi: 10.23919/gemic59120.2024.10485293.
[9]
P. Stadler et al., “In-Package Characterization of Dielectrics Using Ring Resonators and Adaptive 3D EM-Simulations Around 77 GHz,” in Proceedings of the 2024 15th German Microwave Conference, Duisburg, Apr. 2024, pp. 272–275, doi: 10.23919/gemic59120.2024.10485307.
[10]
J. Bott et al., “A 335–407-GHz SiGe-Based Subharmonic Mixer Using a Fully Integrated LO Generation,” IEEE microwave and wireless components letters, vol. 34, no. 6, pp. 675–678, Apr. 2024, doi: 10.1109/lmwt.2024.3389061.
[11]
K. Dausien, M. Kleinschmidt, I. Rolfes, N. Pohl, and J. Barowski, “Robotic Antenna Characterization System Based on Wideband FMCW Transceiver Modules,” in 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, Apr. 2024, doi: 10.23919/eucap60739.2024.10501074.
[12]
J. Schöpfel, N. Pohl, and T. Zwick, “Systemkonzepte und integrierte Schaltungen für Radarsensoren für das vollautomatisierte Fahren,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2024.
[13]
I. Kraus, H. Knapp, and N. Pohl, “VCO Design with Uniformly Low Phase Noise Versus Frequency and Temperature for D-Band Applications,” IEEE transactions on microwave theory and techniques, vol. 72, no. 11, pp. 6216–6227, 2024, doi: 10.1109/tmtt.2024.3397463.
[14]
F. Vogelsang, J. Bott, D. Starke, C. Bredendiek, K. Aufinger, and N. Pohl, “Ultra-Wideband Transceiver MMIC Tuneable From 74.1 GHz to 147.8 GHz in SiGe Technology,” IEEE journal of microwaves, vol. 2024, May 2024, doi: 10.1109/jmw.2024.3401479.
[15]
A. Tinti, S. T. Alfageme, S. D. Biarge, J. Balcells-Ventura, and N. Pohl, “Fully Polarimetric Automotive Radar: Proof of Concept,” IEEE Transactions on Radar Systems , vol. 2, pp. 645–660, 2024, doi: 10.1109/trs.2024.3423631.
[16]
M. van Delden, T. Musch, and N. Pohl, “Components and systems for microwave frequency synthesis of wideband and highly-stable chirps,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2024.
[17]
R. L. Schmid and N. Pohl, “Technical Committee 24 Report 2021-2023 [MTT-S Society News],” IEEE microwave magazine for the microwave & wireless engineer, vol. 25, no. 8, pp. 95–112, Aug. 2024, doi: 10.1109/mmm.2024.3403312.
[18]
T. T. Braun, J. Schöpfel, C. Bredendiek, J. J. Forero, and N. Pohl, “Introducing Inharmonic Radar: Tag Detection in the Automotive Bands of Present and Future at 76–81/134–141 GHz via Fractional Multiplication,” IEEE journal of microwaves, vol. 4, no. 3, pp. 473–485, Jul. 2024, doi: 10.1109/jmw.2024.3412415.
[19]
T. T. Braun, J. Schöpfel, C. Bredendiek, and N. Pohl, “Connecting the Automotive Bands of Present and Future With a Tag for Inharmonic Radar at 76–81/134–141 GHz,” IEEE microwave and wireless components letters, vol. 34, no. 4, pp. 451–454, Feb. 2024, doi: 10.1109/lmwt.2024.3362385.
[20]
H. Çetinkaya, N. Pohl, and I. Rolfes, “Microwave and millimeter-wave radar imaging applications with multiple-input multiple-output arrays: ,” Frauenhofer Verlag, Stuttgart, 2024.
[21]
M. Kadler et al., “A Collection of German Science Interests in the Next Generation Very Large Array: version 2,” Jun. 18, 2024. .
[22]
J. Bott et al., “An 8 × 8 MIMO Radar System Utilizing Cascadable Transceiver MMICs With On-Chip Antennas at 240 GHz,” IEEE Transactions on Radar Systems , vol. 2, pp. 805–820, 2024, doi: 10.1109/trs.2024.3453708.
[23]
L. Sigg et al., “Over-the-Air Synchronization for Coherent Digital Automotive Radar Networks,” IEEE Transactions on Radar Systems , vol. 2, pp. 739–751, Aug. 2024, doi: 10.1109/trs.2024.3449333.
[24]
N. Muckermann, M. A. Abdelmaksoud, J. Romstadt, M. Funk, J. Barowski, and N. Pohl, “FDM/FFF printed dielectric farfield lens antenna using cyclic olefin copolymer filament,” in 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI): proceedings, Florenz, Sep. 2024, doi: 10.1109/ap-s/inc-usnc-ursi52054.2024.10687048.
[25]
J. Romstadt et al., “Proving the Feasibility of D-Band Single SiGe MMIC Vector Network Analyzer Extension Modules with Large System Dynamic Range,” IEEE journal of microwaves, vol. 4, no. 4, pp. 706–720, Sep. 2024, doi: 10.1109/jmw.2024.3444040.
[26]
J. Schöpfel, T. T. Braun, J. Hellwig, H. Rücker, and N. Pohl, “A 79 GHz SiGe Doherty Power Amplifier Suitable for Next-Generation Automotive Radar,” IEEE journal of microwaves, vol. 4, no. 4, pp. 721–732, Jul. 2024, doi: 10.1109/jmw.2024.3419430.
[27]
N. Muckermann, C. Baer, and N. Pohl, “Metal Sheet Thickness Measurement using Dielectric Waveguides with Millimeter Wave Radar,” in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, Oct. 2024, doi: 10.1109/iceaa61917.2024.10701689.
[28]
P. Stadler, K. Aufinger, C. Geissler, and N. Pohl, “An E-Band, High-Gain Current Clamping Power Amplifier for eWLB-Integration,” in 2024 19th European Microwave Integrated Circuits Conference (EuMIC), Paris, Oct. 2024, doi: 10.23919/eumic61603.2024.10732572.
[29]
D. Starke, N. Pohl, and R. Weigel, “Schaltungen und Konzepte für breitbandige integrierte SiGe-Signalquellen bis in den Terahertzbereich,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2024 [Online]. Available: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/deliver/index/docId/12734/file/diss.pdf
[30]
J. Schöpfel, T. T. Braun, and N. Pohl, “Proposing a Subharmonic Downconverting IQ-Mixer for mm-Wave 6G and Other D-Band Applications,” in 2024 19th European Microwave Integrated Circuits Conference (EuMIC), Paris, Oct. 2024, doi: 10.23919/eumic61603.2024.10732460.
[31]
T. T. Braun, J. Schöpfel, K. Aufinger, and N. Pohl, “Optimum Biasing of SiGe-HBTs to Maximize the Gain Per Current for Power Efficient Amplification,” in 2024 19th European Microwave Integrated Circuits Conference (EuMIC), Paris, Oct. 2024, doi: 10.23919/eumic61603.2024.10732512.
[32]
C. Bredendiek, D. Starke, S. Kueppers, K. Aufinger, and N. Pohl, “120 GHz MIMO FMCW radar chipset in a SiGe bipolar technology,” International journal of microwave and wireless technologies, vol. 2024, Dec. 2024, doi: 10.1017/s1759078724000990.
[33]
N. Muckermann, R. Schmitz, J. Barowski, and N. Pohl, “A Fresnel-based lens antenna with reduced antenna reflections for millimeter wave radar,” in 2024 54th European Microwave Conference (EuMC), Paris, Oct. 2024, pp. 268–271, doi: 10.23919/eumc61614.2024.10732805.
[34]
J. Wagner, I. Rolfes, and N. Pohl, “Bildgebendes Radar für Automotive-Anwendungen im W-Band und D-Band,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2024.
2023
[1]
J. P. Thoma et al., “ClepsydraCache: Preventing cache attacks with time-based evictions,” in Proceedings of the 32nd USENIX Security Symposium, Anaheim, Calif., Aug. 2023, pp. 1991–2008 [Online]. Available: https://www.usenix.org/conference/usenixsecurity23/presentation/thoma
[2]
T. T. Braun et al., “A phase-locked loop with a jitter of 50 fs for astronomy applications,” International journal of microwave and wireless technologies, vol. 15, no. 6, pp. 1012–1020, Jan. 2023, doi: 10.1017/s1759078722001386.
[3]
J. Schöpfel, H. Rücker, and N. Pohl, “A differential SiGe HBT doherty power amplifier for automotive radar at 79 GHz,” in 2023 IEEE 23rd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Las Vegas, Feb. 2023, pp. 44–46, doi: 10.1109/sirf56960.2023.10046275.
[4]
H. Papurcu, J. Romstadt, S. Hansen, C. Krebs, K. Aufinger, and N. Pohl, “A wideband four-channel SiGe D-band transceiver MMIC for TDM MIMO FMCW radar,” in 2023 IEEE 23rd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Las Vegas, Feb. 2023, pp. 12–15, doi: 10.1109/sirf56960.2023.10046260.
[5]
J. Romstadt, A. Zaben, H. Papurcu, K. Aufinger, and N. Pohl, “A SiGe D-Band x12 frequency multiplier with Gilbert cell-based tripler,” in 2022 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Phoenix, Ariz., 2023, pp. 195–198, doi: 10.1109/bcicts53451.2022.10051705.
[6]
J. Bott, M. A. Yildirim , and N. Pohl, “Compact and digitally controlled D-band vector modulator for next-gen radar applications in 130 nm SiGe BiCMOS,” IEEE journal of microwaves, vol. 3, no. 2, pp. 815–826, Mar. 2023, doi: 10.1109/jmw.2023.3250340.
[7]
P. Stockel, P. Wallrath, R. Herschel, and N. Pohl, “Motion compensation in six degrees of freedom for a MIMO radar mounted on a hovering UAV,”
IEEE transactions on aerospace and electronic systems , vol. 2023, Apr. 2023, doi: 10.1109/taes.2023.3266181. [Online]. Available: https://doi.org/10.1109/TAES.2023.3266181
[8]
L. Polzin, M. van Delden, N. Pohl, H. Rücker, and T. Musch, “A 142-GHz 4/5 Dual-Modulus Prescaler for Wideband and Low Noise Frequency Synthesizers in 130-nm SiGe:C BiCMOS,” IEEE microwave and wireless components letters, vol. 33, no. 6, pp. 867–870, 2023, doi: 10.1109/lmwt.2023.3265861.
[9]
J. Bott and N. Pohl, “A D-Band Vector Modulator for Imaging Applications in 130nm SiGe,” May 10, 2023. .
[10]
S. Chen, M. Klemp, J. Taghia, U. Kühnau, N. Pohl, and R. Martin, “Improved target detection through DNN-based multi-channel interference mitigation in automotive radar,” IEEE Transactions on Radar Systems , vol. 1, pp. 75–89, May 2023, doi: 10.1109/trs.2023.3279013.
[11]
S. Abouzaid, T. Jaeschke, S. Kueppers, J. Barowski, and N. Pohl, “Deep learning-based material characterization using FMCW radar with open-set recognition technique,” IEEE transactions on microwave theory and techniques, vol. 2023, May 2023, doi: 10.1109/tmtt.2023.3276053.
[12]
J. Romstadt et al., “A 117.5–155-GHz SiGe 12 frequency multiplier chain with push-push doublers and a Gilbert cell-based tripler,” IEEE journal of solid state circuits / Institute of Electrical and Electronics Engineers, vol. 2023, Jun. 2023, doi: 10.1109/jssc.2023.3284600.
[13]
G. vom Boegel et al., “6GEM Perspective on Joint Communication and Sensing,” in WSA & SCC 2023, Braunschweig, Apr. 2023, vol. 308 [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10104581
[14]
T. T. Braun, J. Schöpfel, and N. Pohl, “Detecting vulnerable road users utilizing the harmonic RCS of active tags at 79/158 GHz,” in 2023 IEEE Radar Conference (RadarConf23), San Antonio, Jun. 2023, doi: 10.1109/radarconf2351548.2023.10149776.
[15]
B. Sievert, J. Bott, J. T. Svejda, N. Pohl, D. Erni, and A. Rennings, “Coaxial cable based magnetic and electric near-field probes to measure on-chip components up to 330 GHz,” IEEE antennas and wireless propagation letters / Institute of Electrical and Electronics Engineers, vol. 22, no. 10, pp. 2472–2476, Jul. 2023, doi: 10.1109/lawp.2023.3291571.
[16]
D. Starke, S. Thomas, C. Bredendiek, K. Aufinger, and N. Pohl, “A 67 GHz high output power QVCO with 9.9 % efficiency and improved phase noise in a 130 nm SiGe:C technology,” in 2023 IEEE/MTT-S International Microwave Symposium (IMS 2023), San Diego, Jul. 2023, pp. 69–72, doi: 10.1109/ims37964.2023.10187951.
[17]
D. Starke, F. Vogelsang, J. Bott, C. Bredendiek, K. Aufinger, and N. Pohl, “Fully differential 90 GHz and 180 GHz signal sources with tuning ranges of 24.1 GHz and 51.7 GHz in 90 nm SiGe-BiCMOS,” in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, doi: 10.1109/iwmts58186.2023.10207849.
[18]
S. Schlosser, N. Pohl, and I. Rolfes, “Phasenbasierte Oberflächencharakterisierung in der Radarbildgebung,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023.
[19]
J. Bott and N. Pohl, “A SiGe-based D-band vector modulator for PMCW radar applications,” in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, doi: 10.1109/iwmts58186.2023.10207857.
[20]
F. Vogelsang, D. Starke, J. Bott, C. Bredendiek, K. Aufinger, and N. Pohl, “Ultra-wideband signal source tuneable from 86 GHz to 142 GHz in SiGe technology,” in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, doi: 10.1109/iwmts58186.2023.10207779.
[21]
J. Bott, F. Vogelsang, and N. Pohl, “A D-band phased-array chain based on a tunable branchline coupler and a digitally controlled vector modulator,” IEEE journal of microwaves, vol. 4, no. 1, pp. 101–110, Oct. 2023, doi: 10.1109/jmw.2023.3318528.
[22]
I. Kraus, H. Knapp, D. Reiter, and N. Pohl, “A Monostatic D-Band Doppler MMIC With Very Compact I/Q Mixer Realization in SiGe BiCMOS Technology,” IEEE transactions on microwave theory and techniques, vol. 72, no. 1, pp. 606–617, Nov. 2023, doi: 10.1109/tmtt.2023.3327864.
[23]
T. Welling, J. Romstadt, F. Vogelsang, K. Aufinger, and N. Pohl, “A 365-410 GHz push-push frequency doubler with driving stage in SiGe BiCMOS,” in 2023 18th European Microwave Integrated Circuits Conference (EuMIC), Berlin, Oct. 2023, doi: 10.23919/eumic58042.2023.10288719.
[24]
J. Romstadt et al., “A D-band vector network analyzer extension module based on a SiGe reflectometer MMIC,” in 2023 IEEE/MTT-S International Microwave Symposium (IMS 2023), San Diego, Jul. 2023, pp. 927–930, doi: 10.1109/ims37964.2023.10188062.
[25]
J. Romstadt, T. Welling, F. Vogelsang, M. A. Yildirim , K. Aufinger, and N. Pohl, “A 377–416 GHz push-push frequency doubler with driving stage and transformer-based mode separation in SiGe BiCMOS,” in 2023 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS 2023), Monterey, Calif., Nov. 2023, pp. 233–236, doi: 10.1109/bcicts54660.2023.10311042.
[26]
D. Starke, S. Thomas, C. Bredendiek, K. Aufinger, N. Pohl, and N. Pohl, “A 67 GHz High Output Power QVCO with 9.9 % Efficiency and Improved Phase Noise in a 130 nm SiGe:C Technology,” Nov. 2023 [Online]. Available: https://doi.org/10.36227/techrxiv.24551575.v1
[27]
D. Starke, S. Thomas, C. Bredendiek, K. Aufinger, N. Pohl, and N. Pohl, “A 67 GHz High Output Power QVCO with 9.9 % Efficiency and Improved Phase Noise in a 130 nm SiGe:C Technology,” Nov. 2023 [Online]. Available: https://doi.org/10.36227/techrxiv.24551575
[28]
D. Starke et al., “A fully integrated 0.48 THz FMCW radar transceiver MMIC in a SiGe-technology,” Nov. 21, 2023. .
[29]
D. Starke, F. Vogelsang, J. Bott, C. Bredendiek, K. Aufinger, and N. Pohl, “Fully differential 90 GHz and 180 GHz signal sources with tuning ranges of 24.1 GHz and 51.7 GHz in 90 nm SiGe-BiCMOS,” Nov. 21, 2023. .
[30]
D. Starke et al., “A compact and fully integrated FMCW radar transceiver combined with a dielectric lens,” International journal of microwave and wireless technologies, vol. 16, no. 5, pp. 738–749, Dec. 2023, doi: 10.1017/s1759078723001368.
[31]
P. Stockel, P. Wallrath, R. Herschel, and N. Pohl, “Detection and Monitoring of People in Collapsed Buildings Using a Rotating Radar on a UAV,” IEEE Transactions on Radar Systems , vol. 2, pp. 13–23, Dec. 2023, doi: 10.1109/trs.2023.3342368.
[32]
N. Muckermann, J. Barowski, and N. Pohl, “Quasioptical Fresnel-based lens antenna with frequency-steerable focal length for millimeter wave radars,” International journal of microwave and wireless technologies, vol. 16, no. 5, pp. 712–719, Dec. 2023, doi: 10.1017/s1759078723001472.
[33]
O. Krylova, J. Schöpfel, K. Aufinger, and N. Pohl, “A high linearity SiGe D-band diode ring mixer,” in 2023 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS 2023), Monterey, Calif., 2023, pp. 98–101, doi: 10.1109/bcicts54660.2023.10310845.
[34]
S. Chen , R. Martin, and N. Pohl, “Compressive sensing and deep learning algorithms for interference mitigation in automotive radar systems,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023.
[35]
L. Piotrowsky, N. Pohl, and M. Vossiek, “Accurate distance measurement with ultra-wideband mmWave radar: a proof of concept,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023.
[36]
M. Dedovic, F. Vogelsang, H. Papurcu, K. Aufinger, and N. Pohl, “A 61-187.2-GHz traveling wave push-push frequency doubler in a 130 nm SiGe:C BiCMOS technology with 101.7% fractional bandwidth,” in 2023 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS 2023), Monterey, Calif., 2023, pp. 237–240, doi: 10.1109/bcicts54660.2023.10310975.
[37]
M. van Delden, L. Polzin, B. Walther, N. Pohl, K. Aufinger, and T. Musch, “A fast and highly-linear phase-frequency detector with low noise for fractional phase-locked loops,” in 2023 IEEE/MTT-S International Microwave Symposium (IMS 2023), San Diego, Jul. 2023, pp. 224–227, doi: 10.1109/ims37964.2023.10187956.
[38]
J. Altholz, F. Schenkel, N. Pohl, I. Rolfes, and J. Barowski, “Model-based sensor fusion approach for FMCW radar sensors in non-destructive testing,” in European Microwave Conference 2023, Berlin, 2023, doi: 10.23919/eumc58039.2023.10290699.
[39]
J. Wagner, T. Welling, N. Pohl, I. Rolfes, and J. Barowski, “Array design for automotive mimo radar sensors in d-band,” in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, doi: 10.1109/iwmts58186.2023.10207781.
2022
[1]
J. Romstadt, H. Papurcu, A. Zaben, S. Hansen, K. Aufinger, and N. Pohl, “Comparison on spectral purity of two SiGe D-Band frequency octuplers in MIMO radar MMICs,” in 2021 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Montery, Jan. 2022, p. , doi: 10.1109/bcicts50416.2021.9682491.
[2]
S. Abadpour, S. Marahrens, M. Pauli, J. Siska, N. Pohl, and T. Zwick, “Backscattering behavior of vulnerable road users based on high-resolution RCS measurements,” IEEE transactions on microwave theory and techniques, vol. 70, no. 3, pp. 1582–1593, 2022, doi: 10.1109/tmtt.2021.3131156.
[3]
S. Hansen, C. Bredendiek, G. Briese, A. Froehly, R. Herschel, and N. Pohl, “A SiGe-chip-based D-Band FMCW-radar sensor with 53-GHz tuning range for high resolution measurements in industrial applications,” IEEE transactions on microwave theory and techniques, vol. 70, no. 1, pp. 719–731, 2022, doi: 10.1109/tmtt.2021.3121746.
[4]
B. Sene, D. Reiter, H. Knapp, and N. Pohl, “Design of a cost-efficient monostatic radar sensor with antenna on chip and lens in package,” IEEE transactions on microwave theory and techniques, vol. 70, no. 1, pp. 502–512, 2022, doi: 10.1109/tmtt.2021.3098862.
[5]
S. Küppers, T. Jaeschke, N. Pohl, and J. Barowski, “Versatile 126–182 GHz UWB D-band FMCW radar for industrial and scientific applications,” IEEE sensors letters / Institute of Electrical and Electronics Engineers, vol. 6, no. 1, 2022, doi: 10.1109/lsens.2021.3130709.
[6]
D. Reiter, H. Li, B. Sene, and N. Pohl, “A broadband 77/79 GHz transmitter with dual VCOs and third harmonic signal extraction in a 28 nm CMOS technology,” IEEE journal of microwaves, vol. 2, no. 2, pp. 262–274, Feb. 2022, doi: 10.1109/jmw.2022.3144947.
[7]
T. T. Braun, M. van Delden, C. Bredendiek, J. Schöpfel, and N. Pohl, “A low phase noise phase-locked loop with short settling times for automotive radar,” in 16th European Microwave Integrated Circuits Conference (EuMIC), London, Jun. 2022, pp. 205–208, doi: 10.23919/eumic50153.2022.9783662.
[8]
J. Schöpfel, S. Grueter, J. Wagner, and N. Pohl, “A squint compensated fully differential patch antenna for automotive MIMO applications,” in 2021 51st European Microwave Conference, London, Jun. 2022, pp. 163–166, doi: 10.23919/eumc50147.2022.9784231.
[9]
T. T. Braun, J. Schöpfel, C. Schweer, and N. Pohl, “A harmonic automotive radar for bicycle detection with RFID Tags at 79/158 GHz,” in 2022 IEEE/MTT-S International Microwave Symposium (IMS 2022), Aug. 2022, doi: 10.1109/ims37962.2022.9865601.
[10]
S. Leuchs et al., “Highly Integrated Real-time Imaging MIMO D-Band Radar for Industrial Applications,” in 2022 52nd European Microwave Conference (EuMC), Mailand, Nov. 2022, pp. 768–771, doi: 10.23919/eumc54642.2022.9924447.
[11]
J. Bott, F. Vogelsang, D. Starke, H. Rücker, and N. Pohl, “A SiGe Based 0.48 THz signal source with 45 GHz tuning range,” in 2021 51st European Microwave Conference, London, Jun. 2022, pp. 869–872, doi: 10.23919/eumc50147.2022.9784318.
[12]
D. Starke et al., “A fully integrated 0.48 THz FMCW radar transceiver MMIC in a SiGe-technology,” in 17th European Microwave Integrated Circuits Conference (EuMIC), Mailand, Nov. 2022, pp. 56–59, doi: 10.23919/eumic54520.2022.9923443.
[13]
L. Piotrowsky, J. Barowski, and N. Pohl, “Near-field effects on micrometer accurate ranging with ultra-wideband mmWave radar,” IEEE antennas and wireless propagation letters / Institute of Electrical and Electronics Engineers, vol. 21, no. 5, pp. 938–942, Feb. 2022, doi: 10.1109/lawp.2022.3152558.
[14]
T. Jaeschke, S. Kueppers, N. Pohl, and J. Barowski, “Calibrated and frequency traceable D-Band FMCW radar for VNA-like S-parameter measurements,” in 2022 IEEE Radio and Wireless Symposium, Las Vegas, Feb. 2022, pp. 64–67, doi: 10.1109/rws53089.2022.9719876.
[15]
A. Batra et al., “Fusion of optical and millimeter wave SAR sensing for object recognition in indoor environment,” in 2022 Fifth International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Jul. 2022, doi: 10.1109/iwmts54901.2022.9832438.
[16]
T. T. Braun, J. Schöpfel, A. J. Marquez M, and N. Pohl, “Achieving a relative bandwidth of 176% with a single PLL at up to 12.5 GHz,” in 2022 52nd European Microwave Conference (EuMC), Mailand, Nov. 2022, doi: 10.23919/eumc54642.2022.9924377.
[17]
S. Abouzaid, T. Jaeschke, J. Barowski, and N. Pohl, “FMCW radar-based material characterization using convolutional neural network and K-Means clustering,” in 2022 24nd International Microwave and Radar Conference (MIKON 2022), Gdańsk, 2022.
[18]
J. Schöpfel, T. T. Braun, S. Kueppers, K. Aufinger, and N. Pohl, “A fully differential hybrid coupler for automotive radar applications,” in 17th European Microwave Integrated Circuits Conference (EuMIC), Mailand, Nov. 2022, pp. 107–110, doi: 10.23919/eumic54520.2022.9923546.
[19]
N. Muckermann, J. Barowski, and N. Pohl, “A large distance focus dielectric Fresnel-based lens antenna for millimeter wave radar,” in 2022 52nd European Microwave Conference (EuMC), Mailand, Nov. 2022, pp. 608–611, doi: 10.23919/eumc54642.2022.9924467.
[20]
T. T. Braun, J. Schöpfel, P. Kwiatkowski, C. Schweer, K. Aufinger, and N. Pohl, “Expanding the capabilities of automotive radar for bicycle detection with harmonic RFID tags at 79/158 GHz,” IEEE transactions on microwave theory and techniques, vol. 71, no. 1, pp. 320–329, Nov. 2022, doi: 10.1109/tmtt.2022.3219541.
[21]
A. Orth et al., “A ompact harmonic radar system at 61/122 GHz ISM band for physiological joint angle estimation,” in 2022 19th European Radar Conference (EuRAD), Mailand, 2022, pp. 185–188, doi: 10.23919/eurad54643.2022.9924907.
[22]
P. Kwiatkowski, A. Orth, L. Piotrowsky, and N. Pohl, “A 77-81 GHz FMCW MIMO radar with linear virtual array enabling 3D target localization by use of frequency-steered TX Antennas,” in 2022 19th European Radar Conference (EuRAD), Mailand, 2022, pp. 221–224, doi: 10.23919/eurad54643.2022.9924778.
[23]
B. Sievert, J. Bott, J. T. Svejda, N. Pohl, D. Erni, and A. Rennings, “Bandwidth-enhanced circularly polarized mm-wave antenna with on-chip ground plane,” IEEE transactions on antennas and propagation / Institute of Electrical and Electronics Engineers, vol. 70, no. 10, pp. 9139–9148, Jun. 2022, doi: 10.1109/tap.2022.3184539.
[24]
L. Piotrowsky, S. Kueppers, T. Jaeschke, and N. Pohl, “Distance measurement using mmWave radar: micron accuracy at medium range,” IEEE transactions on microwave theory and techniques, vol. 70, no. 11, pp. 5259–5270, Aug. 2022, doi: 10.1109/tmtt.2022.3195235.
[25]
S. Schlosser, A. Froehly, R. Herschel, and N. Pohl, “Diffraction from metallic objects in radar imaging - theory, simulation, and experimental verification,” IEEE journal of microwaves, vol. 2, no. 4, pp. 626–636, Sep. 2022, doi: 10.1109/jmw.2022.3200304.
[26]
S. Chen, J. Taghia, U. Kuhnau, N. Pohl, and R. Martin, “A two-stage DNN model with mask-gated convolution for automotive radar interference detection and mitigation,” IEEE sensors journal / Institute of Electrical and Electronics Engineers, vol. 22, no. 12, pp. 12017–12027, May 2022, doi: 10.1109/jsen.2022.3173129.
[27]
S. Abadpour et al., “Angular resolved RCS and doppler analysis of human body parts in motion,” IEEE transactions on microwave theory and techniques, vol. 71, no. 4, pp. 1761–1771, Nov. 2022, doi: 10.1109/tmtt.2022.3218304.
[28]
P. Stadler, H. Papurcu, T. Welling, S. Tejero Alfageme, and N. Pohl, “An overview of state-of-the-art D-band radar system components,” Chips [ISSN: 2674-0729], vol. 1, no. 3, p. 121149, Sep. 2022, doi: 10.3390/chips1030009.
[29]
D. Reiter, N. Pohl, and V. Issakov, “Millimeter wave integrated circuits in an advanced CMOS technology for automotive radar applications: ,” Verlag Dr. Hut, München, 2022.
2021
[1]
Y. Sun, N. Pohl, R. Martin, and I. Rolfes, “Signal processing algorithms for gesture recognition using millimeter-wave radar technology,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2021.
[2]
B. Hattenhorst, L. Piotrowsky, N. Pohl, and T. Musch, “An mmWave sensor for real-time monitoring of gases based on real refractive index,” IEEE transactions on microwave theory and techniques, vol. 2021, pp. 1–12, Jul. 2021, doi: 10.1109/tmtt.2021.3092718. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9481195
[3]
S. Hansen, C. Bredendiek, G. Briese, and N. Pohl, “A compact harmonic radar system with active tags at 61/122 GHz ISM band in SiGe BiCMOS for precise localization,” IEEE transactions on microwave theory and techniques, vol. 69, no. 1, pp. 906–915, 2021, doi: 10.1109/tmtt.2020.3026353.
[4]
S. Chen, J. Taghia, T. Fei, U. Kühnau, N. Pohl, and R. Martin, “A DNN autoencoder for automotive radar interference mitigation,” in 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, Toronto, 2021, pp. 4065–4069, doi: 10.1109/icassp39728.2021.9413619.
[5]
S. Thomas, A. Froehly, C. Bredendiek, R. Herschel, and N. Pohl, “High resolution SAR imaging using a 240 GHz FMCW radar system with integrated on-chip antennas,” in EuCAP 2021, Online, Apr. 2021, doi: 10.23919/eucap51087.2021.9410992.
[6]
J. Altholz, J. Wagner, N. Pohl, I. Rolfes, and J. Barowski, “Millimeter wave material measurements for building entry loss models above 100 GHz,” in EuCAP 2021, Online, 2021, doi: 10.23919/eucap51087.2021.9411094.
[7]
B. Sene, H. Knapp, D. Reiter, and N. Pohl, “A compact monostatic transceiver topology using a diode-based mixer,” in 2021 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, CA, Mar. 2021, pp. 7–10, doi: 10.1109/sirf51851.2021.9383332.
[8]
D. Funke et al., “A 61-GHz RFID frontend with SiGe transceiver MMIC and SIW coupling network,” in 2020 50th European Microwave Conference (EuMC 2020), Online, Feb. 2021, pp. 165–168, doi: 10.23919/eumc48046.2021.9338212.
[9]
B. Sene, H. Knapp, D. Reiter, and N. Pohl, “A 122-242 GHz dynamic frequency divider in an advanced BiCMOS technology,” in 2020 15th European Microwave Integrated Circuits Conference (EuMIC 2020), Online, 2021, pp. 296–299 [Online]. Available: https://ieeexplore.ieee.org/document/9337430
[10]
C. Bredendiek, S. Hansen, G. Briese, and N. Pohl, “A full E-band single-channel SiGe transceiver MMIC for monostatic FMCW radar systems,” in 2020 15th European Microwave Integrated Circuits Conference (EuMIC 2020), Online, Feb. 2021, pp. 185–188 [Online]. Available: https://ieeexplore.ieee.org/document/9337404
[11]
S. Pawliczek, R. Herschel, and N. Pohl, “Spatial mapping of material properties utilizing FMCW near field radar scans,” in 2020 17th European Radar Conference , Utrecht, 2021, pp. 322–325, doi: 10.1109/eurad48048.2021.00089.
[12]
J. Schorlemer, C. Schulz, N. Pohl, I. Rolfes, and J. Barowski, “Compensation of sensor movements in short-range FMCW synthetic aperture radar algorithms,” IEEE transactions on microwave theory and techniques, vol. 69, no. 11, pp. 5145–5159, 2021, doi: 10.1109/tmtt.2021.3108399.
[13]
L. Piotrowsky and N. Pohl, “Spatially resolved fast-time vibrometry using ultrawideband FMCW radar systems,” IEEE transactions on microwave theory and techniques, vol. 69, no. 1, pp. 1082–1095, 2021, doi: 10.1109/tmtt.2020.3038080.
[14]
B. Sene, D. Reiter, H. Knapp, H. Li, T. T. Braun, and N. Pohl, “An automotive D-Band FMCW radar sensor based on a SiGe-transceiver MMIC,” IEEE microwave and wireless components letters, vol. 2021, Nov. 2021, doi: 10.1109/lmwc.2021.3121656.
[15]
S. Thomas, N. Pohl, T. Zwick, and T. Musch, “System- und Antennenkonzepte für ein FMCW-Radarsystem auf Basis eines 240-GHz-SiGe-Transceiver-MMIC,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2021.
[16]
J. Bott, B. Sievert, M. Dedic, D. Erni, A. Rennings, and N. Pohl, “The impact of group delay dispersion on radar imaging with multiresonant antennas,” IEEE microwave and wireless components letters, vol. 32, no. 3, pp. 241–244, Dec. 2021, doi: 10.1109/lmwc.2021.3128281.
[17]
B. B. Sene, N. Pohl, V. Issakov, and T. Musch, “System concepts and building blocks for radar circuits operating above 100 GHz in SiGe-BiCMOS technologies,” Verlag Dr. Hut, München, 2021.
[18]
J. P. Thoma et al., “ClepsydraCache - preventing cache attacks with time-based evictions,” 2021. [Online]. Available: https://arxiv.org/abs/2104.11469
[19]
D. Reiter, H. Li, B. Sene, and N. Pohl, “A low-noise W-band receiver in a 28-nm CMOS technology,” IEEE microwave and wireless components letters, vol. 32, no. 5, pp. 406–409, Nov. 2021, doi: 10.1109/lmwc.2021.3125896.
2020
[1]
Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz, and N. Pohl, “Real-time radar-based gesture detection and recognition built in an edge-computing platform,” IEEE sensors journal / Institute of Electrical and Electronics Engineers, vol. 20, no. 18, pp. 10706–10716, May 2020, doi: 10.1109/jsen.2020.2994292.
[2]
C. Dahl, I. Rolfes, M. Vogt, and N. Pohl, “Fraktale Antennenkonzepte für die Füllstandmessung mit MIMO Radarsystemen,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2020.
[3]
M. Elsaadouny, I. Rolfes, and N. Pohl, “Deep learning models for SAR imaging results interpretation,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2020.
[4]
J. Barowski et al., “Design and evaluation of a passive frequency-coded reflector using W-band FMCW radar,” in 2020 German Microwave Conference (GeMiC), Cottbus, 2020, pp. 92–95 [Online]. Available: https://ieeexplore.ieee.org/document/9080198
[5]
J. Altholz, I. Rolfes, N. Pohl, and J. Barowski, “Millimeterwave radar systems for in-line thickness monitoring in pipe extrusion production lines,” IEEE sensors letters / Institute of Electrical and Electronics Engineers, vol. 4, no. 5, 2020, doi: 10.1109/lsens.2020.2991778.
[6]
B. Sievert, J. T. Svejda, J. Bott, N. Pohl, D. Erni, and A. Rennings, “Equivalent circuit model separating dissipative and radiative losses for the systematic design of efficient microstrip-based on-chip antennas,” IEEE transactions on microwave theory and techniques, vol. 69, no. 2, pp. 1282–1294, Dec. 2020, doi: 10.1109/tmtt.2020.3040453.
[7]
H. Cetinkaya, S. Küppers, R. Herschel, and N. Pohl, “Millimeter-wave MIMO array based on semi-circular topology,” IEEE sensors journal / Institute of Electrical and Electronics Engineers, vol. 20, no. 14, pp. 7740–7749, Jul. 2020, doi: 10.1109/jsen.2020.2980178.
[8]
P. Hillger et al., “Toward mobile integrated electronic systems at THz frequencies,” Journal of infrared, millimeter, and terahertz waves, vol. 41, no. 7, pp. 846–869, Jun. 2020, doi: 10.1007/s10762-020-00699-x.
[9]
S. Küppers, H. Cetinkaya, R. Herschel, and N. Pohl, “A compact 24 × 24 channel MIMO FMCW radar system using a substrate integrated waveguide-based reference distribution backplane,” IEEE transactions on microwave theory and techniques, vol. 68, no. 6, pp. 2124–2133, Apr. 2020, doi: 10.1109/tmtt.2020.2983676.
[10]
B. Welp et al., “Versatile dual-receiver 94-GHz FMCW radar system with high output power and 26-GHz tuning range for high distance applications,” IEEE transactions on microwave theory and techniques, vol. 68, no. 3, pp. 1195–1211, Jan. 2020, doi: 10.1109/tmtt.2019.2955127.
[11]
A. Reinhardt, L. Freiwald, T. Jaeschke, N. Pohl, and M. Höft, “A fully integrated SiGe radar sensor for aerosol flow rate measurements,” IEEE microwave and wireless components letters, vol. 30, no. 2, pp. 216–218, Jan. 2020, doi: 10.1109/lmwc.2019.2960477.
[12]
F. Vogelsang, D. Starke, J. Bott, H. Rücker, and N. Pohl, “A highly-efficient 120 GHz and 240 GHz signal source in a SiGe-technology,” in 2020 IEEE BiCMOS Compound Semiconductor Integrated Circuits and Technology (BCICTS 2020), Monterey, CA, 2020, pp. 226–229, doi: 10.1109/bcicts48439.2020.9392945.
[13]
L. Polzin, M. van Delden, N. Pohl, K. Aufinger, and T. Musch, “A 117 GHz dual-modulus prescaler with inductive peaking for a programmable frequency divider,” in 2020 IEEE BiCMOS Compound Semiconductor Integrated Circuits and Technology (BCICTS 2020), Monterey, CA, 2020, doi: 10.1109/bcicts48439.2020.9392936.
[14]
B. Nuss, A. Diewald, J. Schöpfel, D. Martini, N. Pohl, and T. Zwick, “76GHz OFDM radar demonstrator with real-time processing for automotive applications,” in 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM 2020), Online, 2020, pp. 5–8, doi: 10.1109/icmim48759.2020.9299057.
[15]
L. Piotrowsky, J. Siska, C. Schweer, and N. Pohl, “Using FMCW radar for spatially resolved intra-chirp vibrometry in the audio range,” in 2020 IEEE/MTT-S International Microwave Symposium (IMS 2020), Online, 2020, pp. 791–794, doi: 10.1109/ims30576.2020.9223921.
[16]
S. Hansen, C. Bredendiek, and N. Pohl, “Active reflector tag for millimeter wave harmonic radar at 61/122 GHz ISM band based on 130 nm-BiCMOS SiGe:C technology,” in 2020 IEEE/MTT-S International Microwave Symposium (IMS 2020), Online, 2020, pp. 611–614, doi: 10.1109/ims30576.2020.9224043.
[17]
B. Welp et al., “K-Band MIMO FMCW radar using CDMA for TX-separation based on an ultra-wideband SiGe BiCMOS radar chipset,” in 2020 IEEE/MTT-S International Microwave Symposium (IMS 2020), Online, 2020, pp. 1247–1250, doi: 10.1109/ims30576.2020.9223966.
[18]
B. Welp, G. Briese, and N. Pohl, “Ultra-wideband FMCW radar with over 40 GHz bandwidth below 60 GHz for high spatial resolution in SiGe BiCMOS,” in 2020 IEEE/MTT-S International Microwave Symposium (IMS 2020), Online, 2020, pp. 1255–1258, doi: 10.1109/ims30576.2020.9224087.
[19]
A. Orth, P. Kwiatkowski, and N. Pohl, “A radar-based hand-held guidance aid for the visually impaired,” in 2020 German Microwave Conference (GeMiC), Cottbus, 2020, pp. 180–183 [Online]. Available: https://ieeexplore.ieee.org/document/9080187
[20]
J. Bott, A. Mostafa Ibrahim Ahmed, T. N. Tran, A. Sezgin, and N. Pohl, “3D localization using a scalable FMCW MIMO radar design,” in 2020 German Microwave Conference (GeMiC), Cottbus, 2020, pp. 100–103 [Online]. Available: https://ieeexplore.ieee.org/document/9080225
[21]
L. Kwiatkowski, A. Orth, and N. Pohl, “A novel simulation model for design of frequency steered slotted waveguide antennas in SIW technology for accurate far field synthesis,” in 2020 German Microwave Conference (GeMiC), Cottbus, 2020, pp. 48–51 [Online]. Available: https://ieeexplore.ieee.org/document/9080189
[22]
C. Bredendiek, K. Aufinger, and N. Pohl, “Investigation of integrated mmW-downconverter VCOs in SiGe for offset-PLL FMCW-transceivers,” in 2020 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF 2020), San Antonio, 2020, pp. 43–46, doi: 10.1109/sirf46766.2020.9040181.
[23]
J. Romstadt, V. Lammert, N. Pohl, and V. Issakov, “Transformer-coupled D-band PA with 11.8 dBm Psat and 6.3 % PAE in 0.13 μm SiGe BiCMOS,” in 2020 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF 2020), San Antonio, 2020, pp. 77–80, doi: 10.1109/sirf46766.2020.9040185.
[24]
Y. Sun, T. Fei, A. Warnecke, E. Warsitz, and N. Pohl, “Multi-feature encoder fpr radar-based gesture recognition,” in 2020 IEEE International Radar Conference (RADAR 2020), Online, 2020, pp. 351–356, doi: 10.1109/radar42522.2020.9114664.
[25]
I. Rolfes and N. Pohl, “Guest editorial,” in IEEE transactions on microwave theory and techniques, vol. 68, no. 6, New York, NY: IEEE, 2020, pp. 2065–2066.
2019
[1]
D. Funke, J. Oehm, and N. Pohl, “Ultra-Low-Power Schaltungen für Mikrosysteme in CMOS-Technologie,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2019.
[2]
M. Zohourian et al., “Contributions to binaural speaker localization and separation for dynamic acoustic scenarios,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2019.
[3]
J. Barowski, J. Altholz, J. Wagner, N. Pohl, and I. Rolfes, “Spatial identification of dielectric properties using synthetic aperture radar,” in 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2019), Bochum, 2019, pp. 139–141, doi: 10.1109/imws-amp.2019.8880121.
[4]
L. Piotrowsky, T. Jaeschke, S. Küppers, J. Siska, and N. Pohl, “Enabling high accuracy distance measurements with FMCW radar sensors,” IEEE transactions on microwave theory and techniques, vol. 67, no. 12, pp. 5360–5371, Sep. 2019, doi: 10.1109/tmtt.2019.2930504.
[5]
Y. Sun, T. Fei, and N. Pohl, “A high-resolution framework for range-doppler frequency estimation in automotive radar systems,” IEEE sensors journal / Institute of Electrical and Electronics Engineers, vol. 19, no. 23, pp. 11346–11358, Dec. 2019, doi: 10.1109/jsen.2019.2933776.
[6]
S. Thomas, C. Bredendiek, and N. Pohl, “A SiGe-based 240-GHz FMCW radar system for high-resolution measurements,” IEEE transactions on microwave theory and techniques, vol. 67, no. 11, pp. 4599–4609, Nov. 2019, doi: 10.1109/tmtt.2019.2916851.
[7]
M. van Delden, N. Pohl, K. Aufinger, C. Baer, and T. Musch, “A low-noise transmission-type yttrium iron garnet tuned oscillator based on a SiGe MMIC and bond-coupling operating up to 48 GHz,” IEEE transactions on microwave theory and techniques, vol. 67, no. 10, pp. 3973–3982, 2019, doi: 10.1109/tmtt.2019.2926293.
[8]
J. Schöpfel, S. Küppers, K. Aufinger, and N. Pohl, “A SiGe transceiver chipset for automotive radar applications using wideband modulation sequences,” International journal of microwave and wireless technologies, vol. 11, no. 7, pp. 676–685, May 2019, doi: 10.1017/s1759078719000849.
[9]
L. Piotrowsky, V. Bernhardt, J. Barowski, I. Rolfes, and N. Pohl, “Antenna pattern characterization with an industrial robot assisted FMCW radar system,” in Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapur, 2019, pp. 153–155, doi: 10.1109/apmc46564.2019.9038798.
[10]
D. Reiter et al., “A 16-dBm D-Band power amplifier with a cascaded CE and CB output power stage using a stub matching topology,” in 2019 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS 2019), Nashville, TN, 2019, pp. 258–261, doi: 10.1109/bcicts45179.2019.8972772.
[11]
D. Reiter et al., “A 19.5 dBm power amplifier with highly accurate 8-bit power controlling for automotive radar applications in a 28 nm CMOS technology,” in 2019 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS 2019), Nashville, TN, 2019, pp. 262–265, doi: 10.1109/bcicts45179.2019.8972775.
[12]
J. Schöpfel, S. Küppers, K. Aufinger, and N. Pohl, “Ein modularer Radar-Chipsatz für 77 GHz MIMO Anwendungen,” in MikroSystemTechnik Kongress 2019, Berlin, 2019, pp. 291–292.
[13]
S. Thomas, C. Bredendiek, and N. Pohl, “Ein 240 GHz FMCW Radarsensor für hochauflösende Messungen in SiGe mit integrierten Antennen,” in MikroSystemTechnik Kongress 2019, Berlin, 2019, pp. 305–307.
[14]
N. Pohl et al., “Ein Konzept zur Hetero-Integration von SiGe mit GaAs für einen hochauflösenden Radarsensor bei 300 GHz,” in MikroSystemTechnik Kongress 2019, Berlin, 2019, pp. 643–644.
[15]
S. Pawliczek, R. Herschel, and N. Pohl, “3D millimeter wave screening for metallic surface defect detection,” in 2019 16th European Radar Conference (euRAD 2019), Paris, 2019, pp. 113–116 [Online]. Available: https://ieeexplore.ieee.org/document/8904495
[16]
A. Orth, P. Kwiatkowski, and N. Pohl, “A novel approach for a MIMO FMCW radar system with frequency steered antennas for 3D target localization,” in 2019 16th European Radar Conference (euRAD 2019), Paris, 2019, pp. 37–40 [Online]. Available: https://ieeexplore.ieee.org/document/8904773
[17]
C. Bredendiek, K. Aufinger, and N. Pohl, “Full waveguide E- and W-band fundamental VCOs in SiGe:C technology for next generation FMCW radars sensors,” in 2019 14th European Microwave Integrated Circuits Conference (EuMIC 2019), Paris, Nov. 2019, pp. 148–151, doi: 10.23919/eumic.2019.8909457.
[18]
S. Hansen and N. Pohl, “A W-Band stepped impedance transformer transition from SIW to RWG for thin single layer substrates with thick metal cladding,” in 2019 49th European Microwave Conference (EuMC 2019), Paris, 2019, pp. 352–355, doi: 10.23919/eumc.2019.8910721.
[19]
S. Küppers, R. Herschel, S. Wang, D. Nüer, and N. Pohl, “Imaging characteristics of a 24 × 24 channel MIMO FMCW radar based on a SiGe:C Chipset,” in 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2019), Bochum, 2019, pp. 133–135, doi: 10.1109/imws-amp.2019.8880076.
[20]
C. Urbanietz, G. Enzner, A. Orth, P. Kwiatkowski, and N. Pohl, “A radar-based navigation assistance device with binaural sound interface for vision-impaired people,” in Proceedings of the 25th International Conference on Auditory Display (ICAD 2019), Newcastle upon Tyne, 2019, pp. 236–243.
[21]
L. Piotrowsky, T. Jaeschke, S. Küppers, and N. Pohl, “An unambiguous phase-based algorithm for single-digit micron accuracy distance measurements using FMCW radar,” in 2019 IEEE MTT-S International Microwave Symposium (IMS 2019), Boston, Mass., 2019, pp. 552–555, doi: 10.1109/mwsym.2019.8700889 [Online]. Available: https://ieeexplore.ieee.org/document/8700889
[22]
Y. Sun, T. Fei, S. Gao, and N. Pohl, “Automatic radar-based gesture detection and classification via a region-based deep convolutional neural network,” in 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, Brighton, 2019, pp. 4300–4304, doi: 10.1109/icassp.2019.8682277.
[23]
M. van Delden, N. Pohl, K. Aufinger, and T. Musch, “A 32-48 GHz differential YIG oscillator with low phase noise based on a SiGe MMIC,” in 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, Fla., 2019, pp. 565–567, doi: 10.1109/rws.2019.8714500.
[24]
J. Siska, T. Jaeschke, J. Wagner, and N. Pohl, “FPGA-accelerated multispectral ultra-high resolution SAR-imaging with wideband FMCW radars,” in 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, Fla., 2019, pp. 21–23, doi: 10.1109/rws.2019.8714407.
[25]
D. Reiter et al., “A low phase noise, wide tuning range 20ghz magnetic-coupled hartley-VCO in a 28nm CMOS technology,” in 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, Fla., 2019, pp. 270–272, doi: 10.1109/rws.2019.8714258.
2018
[1]
C. Bredendiek et al., “A 61-GHz SiGe transceiver frontend for energy and data transmission of passive RFID single-chip tags with integrated antennas,” IEEE journal of solid state circuits / Institute of Electrical and Electronics Engineers, vol. 53, no. 9, pp. 2441–2453, Sep. 2018, doi: 10.1109/jssc.2018.2843348.
[2]
S. Pawliczek, R. Herschel, and N. Pohl, “High precision surface reconstruction based on coherent near field synthetic aperture radar scans,” in 2018 19th International Radar Symposium (IRS 2018), Bonn, 2018, pp. 57–66, doi: 10.23919/irs.2018.8448051.
[3]
M. van Delden, N. Pohl, and T. Musch, “An ultra-wideband fast frequency ramp synthesizer at 60 GHz with low noise using a new loop gain compensation technique,” IEEE transactions on microwave theory and techniques, vol. 66, no. 9, pp. 3937–3946, Jul. 2018, doi: 10.1109/tmtt.2018.2851991. [Online]. Available: https://ieeexplore.ieee.org/document/8421596
[4]
C. Schulz, M. Gerding, T. Jaeschke, A. J. Golkowski, and N. Pohl, “RCS investigation of tetrahedral aligned sphere targets for radar positioning,” Jul. 12, 2018.
[5]
S. Küppers, R. Herschel, and N. Pohl, “Advances in compact integrated multichannel millimeter wave radar systems using SiGe BiCMOS technology (Focused session on highly-integrated millimeter-wave radar sensors in SiGe BiCMOS technologies),” in 2018 22nd International Microwave and Radar Conference (MIKON 2018), Posen, 2018, pp. 330–333, doi: 10.23919/mikon.2018.8405217.
[6]
B. Welp, N. Pohl, J. Schwenk, A. Stelzer, and T. Musch, “Systemkonzept und Schaltungen für breitbandige MIMO-FMCW-Radarsysteme bis 60 GHz in modernen SiGe-Bipolartechnologien,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2018 [Online]. Available: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/6346
[7]
B. Welp, A. Meusling, K. Aufinger, and N. Pohl, “A mixed-mode beamforming radar transmitter MMIC utilizing novel ultrawideband IQ-generation techniques in SiGe BiCMOS,” IEEE transactions on microwave theory and techniques, vol. 66, no. 6, pp. 2604–2617, Mar. 2018, doi: 10.1109/tmtt.2018.2804912.
[8]
S. Hansen, S. Küppers, and N. Pohl, “A wideband millimeter-wave SIW-to-RWG transition for thin single layer substrates with thick metal cladding,” in 2018 48th European Microwave Conference (EuMC 2018), Madrid, 2018, pp. 117–120, doi: 10.23919/eumc.2018.8541598.
[9]
J. Schöpfel, S. Küppers, K. Aufinger, and N. Pohl, “A multipurpose 76GHz radar transceiver system for automotive applications based on SiGe MMICs,” in 2018 13th European Microwave Integrated Circuits Conference (EuMIC 2018), Madrid, 2018, pp. 45–48, doi: 10.23919/eumic.2018.8539885.
[10]
C. Schulz, M. Gerding, T. Jaeschke, A. J. Golkowski, and N. Pohl, “RCS investigation of tetrahedral aligned sphere targets for radar positioning,” in 2018 IEEE Antennas and Propagation Society International Symposium, Boston, Mass., 2018, pp. 2285–2286, doi: 10.1109/apusncursinrsm.2018.8608913.
[11]
Y. Sun, T. Fei, and N. Pohl, “Two-dimensional subspace-based model order selection methods for FMCW automotive radar systems,” in 2018 Asia-Pacific Microwave Conference (APMC 2018), Kyoto, 2018, pp. 1247–1249, doi: 10.23919/apmc.2018.8617478.
[12]
A. Orth, T. Jaeschke, L. Piotrowsky, and N. Pohl, “High precision real-time FMCW-radar signal processing performed on a levitating sphere control loop system,” in 2018 11th German Microwave Conference (GeMiC 2018), Freiburg im Breisgau, 2018, pp. 363–366, doi: 10.23919/gemic.2018.8335105.
[13]
C. Schulz, M. Gerding, T. Jaeschke, A. J. Golkowski, and N. Pohl, “Investigation of a 3D printed tetrahedral aligned sphere target at 145 GHz for radar positioning,” in 2018 Asia-Pacific Microwave Conference (APMC 2018), Kyoto, 2018, pp. 381–383, doi: 10.23919/apmc.2018.8617573.
[14]
N. Pohl, T. Jaeschke, S. Küppers, C. Bredendiek, and D. Nüßler, “A compact ultra-wideband mmWave radar sensor at 80 GHz based on a SiGe transceiver chip (Focused session on highly-integrated millimeter-wave radar sensors in SiGe BiCMOS technologies),” in 2018 22nd International Microwave and Radar Conference (MIKON 2018), Posen, 2018, pp. 345–347, doi: 10.23919/mikon.2018.8405221.
[15]
S. Küppers, S. Wang, H. Cetinkaya, R. Herschel, and N. Pohl, “Imaging characteristics of a highly integrated millimeterwave MIMO radar,” in 2018 19th International Radar Symposium (IRS 2018), Bonn, 2018, pp. 525–534, doi: 10.23919/irs.2018.8448247.
[16]
D. Nüßler et al., “Detection of unmanned aerial vehicles (UAV) in urban environments,” in Emerging Imaging and Sensing Technologies for Security and Defence III; and Unmanned Sensors, Systems, and Countermeasures, Berlin, Oct. 2018, vol. 10799, doi: 10.1117/12.2325637.
[17]
Y. Sun, T. Fei, F. Schliep, and N. Pohl, “Gesture classification with handcrafted micro-doppler features using a FMCW radar,” in 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM 2018), München, 2018, pp. 69–72, doi: 10.1109/icmim.2018.8443507.
[18]
N. Pohl, “Final program: Message from the SiRF General Chair: Welcome to SiRF 2018!,” in 2018 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Anaheim, Mar. 2018, pp. 3–8, doi: 10.1109/pawr.2018.8310050.
[19]
N. Pohl, “Program: The 18TH Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems: Message from the SiRF General Chair: Welcome to SiRF 2018!,” in 2018 IEEE Radio and Wireless Symposium (RWS), Anaheim, Mar. 2018, p. 3, doi: 10.1109/rws.2018.8304928.
2017
[1]
C. Bredendiek, B. Welp, K. Aufinger, and N. Pohl, “A 61 GHz SiGe transmitter chip for energy and data transmission of passive RFID single chip tags with integrated antennas,” in 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM 2017), Miami, Fla-, 2017, pp. 166–169, doi: 10.1109/bctm.2017.8112936.
[2]
A. Grebennikov and N. Pohl, “Guest editorial,” IEEE transactions on microwave theory and techniques, vol. 65, no. 10, pp. 3559–3560, Sep. 2017, doi: 10.1109/tmtt.2017.2745658.
[3]
J. Klare et al., “Radar warning and information system for applications in disaster management (RAWIS),” in 2017 18th International Radar Symposium (IRS 2017), Prag, 2017, pp. 34–43, doi: 10.23919/irs.2017.8008087.
[4]
D. Nüßler, M. Schubert, S. Kose, and N. Pohl, “Swifter security scanning: millimeter-wave imaging with spin,” IEEE microwave magazine for the microwave & wireless engineer, vol. 18, no. 6, pp. 70–78, Aug. 2017, doi: 10.1109/mmm.2017.2712018.
[5]
B. Welp, A. Meusling, K. Aufinger, and N. Pohl, “A 1-30 GHz 3-bit vector modulator based on ultra-wideband IQ-generation for MIMO-radar-systems in SiGe BiCMOS,” in 2017 IEEE Radio Frequency Integrated Circuits Sympopsium (RFIC 2017), Honolulu, 2017, pp. 300–303, doi: 10.1109/rfic.2017.7969077.
[6]
N. Pohl, “GeMiC 2016,” in Frequenz, vol. 71, no. 3–4, Berlin: De Gruyter, 2017, p. 119.
[7]
S. Ayhan et al., “Millimeter-wave radar sensor for snow height measurements,” IEEE transactions on geoscience and remote sensing / Institute of Electrical and Electroncis Engineers, vol. 55, no. 2, pp. 854–861, 2017, doi: 10.1109/tgrs.2016.2616441.
[8]
S. Scherr et al., “Influence of radar targets on the accuracy of FMCW radar distance measurements,” IEEE transactions on microwave theory and techniques, vol. 65, no. 10, pp. 3640–3647, Sep. 2017, doi: 10.1109/tmtt.2017.2741961.
[9]
S. Thomas, B. Welp, and N. Pohl, “Ultra-wideband signal generation at 300 GHz in a SiGe BiCMOS technology,” in 2017 12th European Microwave Integrated Circuits Conference (EuMIC 2017), Nürnberg, 2017, pp. 138–141, doi: 10.23919/eumic.2017.8230679.
[10]
P. Kwiatkowski, T. Jaeschke, D. Starke, L. Piotrowsky, H. Deis, and N. Pohl, “A concept study for a radar-based navigation device with sector scan antenna for visually impaired people,” in 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC 2017), Göteborg, 2017, p. , doi: 10.1109/imbioc.2017.7965796.
[11]
S. Scherr et al., “Target evaluation for high accuracy 80 GHz FMCW radar distance measurements,” in 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet 2017), Phoenix, Ariz., 2017, pp. 11–14, doi: 10.1109/wisnet.2017.7878743.
[12]
N. Pohl, T. Jaeschke, S. Thomas, S. Küppers, and C. Bredendiek, “Realization and application potentials of high resolution FMCW radar sensors based on SiGe MMICs,” 2017.
[13]
S. Küppers, K. Aufinger, and N. Pohl, “A fully differential 100 - 140 GHz frequency quadrupler in a 130 nm SiGe:C technology for MIMO radar applications using the bootstrapped Gilbert-Cell doubler topology,” in 2017 IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SIRF 2017), Phoenix, Ariz, 2017, pp. 37–39, doi: 10.1109/sirf.2017.7874364.
[14]
B. Hattenhorst, C. Baer, T. Musch, T. Jaeschke, and N. Pohl, “Gas flow monitoring in high and low reynolds regimes based on compensated FMCW-radar phase measurements,” Frequenz, vol. 71, no. 3–4, pp. 195–205, 2017, doi: 10.1515/freq-2016-0216.
[15]
S. Kueppers, H. Cetinkaya, and N. Pohl, “A compact 120 GHz SiGe:C based 2 × 8 FMCW MIMO radar sensor for robot navigation in low visibility environments,” in 2017 14th European Radar Conference (EURAD 2017), Nürnberg, 2017, pp. 122–125, doi: 10.23919/eurad.2017.8249162.
[16]
A. Küter, S. Reible, T. Geibig, D. Nüßler, and N. Pohl, “THz imaging for recycling of black plastics,” Technisches Messen, vol. 85, no. 3, pp. 191–201, 2017, doi: 10.1515/teme-2017-0062.
[17]
J. Barowski, I. Rolfes, N. Pohl, and M. Hübner, “Radarbasierte Messverfahren für die präzise ortsaufgelöste Materialcharakterisierung,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2017.
[18]
C. Schulz, I. Rolfes, and N. Pohl, “Novel sensor concepts for plasma diagnostics,” Verlag Dr. Hut, München, 2017.
[19]
G. Ruße, T. Musch, and N. Pohl, “System- und Schaltungskonzepte zur breitbandigen und hochstabilen Signalsynthese,” Verlag Dr. Hut, München, 2017.
[20]
T. Jaeschke, N. Pohl, and T. Musch, “Hochpräzise FMCW-Radarsysteme zur korrelationsbasierten Geschwindigkeitsmessung von Fluidströmungen,” Verlag Dr. Hut, München, 2017.
[21]
M. van Delden, N. Pohl, and T. Musch, “A new concept to compensate the loop gain variation in phase-locked loops for wideband microwave frequency ramp synthesis,” in 2017 IEEE Asia Pacific Microwave Conference, Kuala Lumpur, 2017, pp. 914–917, doi: 10.1109/apmc.2017.8251598.
[22]
M. van Delden, N. Pohl, K. Aufinger, and T. Musch, “A 94 GHz programmable frequency divider with inductive peaking for wideband and highly stable frequency synthesizers,” in 2017 12th European Microwave Integrated Circuits Conference (EuMIC 2017), Nürnberg, 2017, pp. 9–12, doi: 10.23919/eumic.2017.8230647.
[23]
D. Funke et al., “A 200 μm by 100 μm smart submersible system with an average current consumption of 1.3nA and a compatible voltage converter,” IEEE transactions on circuits and systems 1, vol. 64, no. 12, pp. 3013–3024, Sep. 2017, doi: 10.1109/tcsi.2017.2750905.
[24]
D. Funke, P. Mayr, L. Straczek, J. S. McCaskill, J. Oehm, and N. Pohl, “A 200 μm by 100 μm Smart Dust system with an average current consumption of 1.3 nA,” in 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS 2016), Monte Carlo, 2017, pp. 512–515, doi: 10.1109/icecs.2016.7841251.
[25]
H. Cetinkaya, S. Küppers, R. Herschel, and N. Pohl, “Focusing patterns within far and near field for a novel 2D sparse MIMO array,” in 47th European Microwave Conference (EuMC 2017), Nürnberg, 2017, pp. 132–135, doi: 10.23919/eumc.2017.8230817.
[26]
D. Nüßler, N. Pohl, and S. Leuchs, “Inline density measurement for rock wool ,” in OCM 2017, 3rd International Conference on Optical Characterization of Materials, Karlsruhe, 2017, pp. 121–127 [Online]. Available: https://edocs.tib.eu/files/e01fn17/883906201.pdf
[27]
H. Cetinkaya, S. Küppers, R. Herschel, and N. Pohl, “Near and far field focusing patterns for a 2D sparse MIMO array,” in 2017 11th European Conference on Antennas and Propagation (EUCAP 2017), Paris, 2017, pp. 461–464, doi: 10.23919/eucap.2017.7928367.
[28]
D. Noetel, F. Kloeppel, S. Sieger, D. Janssen, N. Pohl, and N. Pohl, “MIRANDA 35 GHz SAR based non-coherent change detection,” Frequenz, vol. 71, no. 3–4, pp. 207–313, 2017, doi: 10.1515/freq-2016-0224.
[29]
A. Kübler, S. Reible, T. Geibig, D. Nüßler, and N. Pohl, “THz imaging for recycling of black plastics,” in OCM 2017, 3rd International Conference on Optical Characterization of Materials, Karlsruhe, 2017, pp. 221–231 [Online]. Available: https://edocs.tib.eu/files/e01fn17/883906201.pdf
[30]
S. Scherr, S. Thomas, M. Pauli, S. Ayhan, N. Pohl, and T. Zwick, “High accuracy millimetre wave radar for micro machining,” in Small machine tools for small workpieces, J. P. Wulfsberg and A. Sanders, Eds. Cham: Springer, 2017, pp. 181–198.
[31]
N. Pohl, T. Jaeschke, S. Thomas, S. Küppers, and C. Bredendiek, “Realization and application potentials of high resolution FMCW radar sensors based on SiGe MMICs,” in AMA conferences 2017, Nürnberg, 2017.
[32]
B. Fischer et al., “Radar width measurement in harsh hot mill environments,”
Iron & steel technology, vol. 14, no. 12, pp. 72–77, 2017 [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-85034588697&partnerID=MN8TOARS
2016
[1]
N. Pohl, “Aufklärung mittels Millimeterwellen-SAR,” Jun. 11, 2016.
[2]
R. Herschel, S. Lang, and N. Pohl, “Sensor fusion supporting high resolution radar for security applications,” in Future security conference, Berlin, 2016.
[3]
C. Baer et al., “Investigation of a mmWave-radar-based sensor for snow-suspension density measurements,” IEEE sensors journal / Institute of Electrical and Electronics Engineers, vol. 16, no. 24, pp. 8861–8862, Oct. 2016, doi: 10.1109/jsen.2016.2620340.
[4]
S. Thomas, C. Bredendiek, T. Jaeschke, F. Vogelsang, and N. Pohl, “A compact, energy-efficient 240 GHz FMCW radar sensor with high modulation bandwidth,” in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, pp. 397–400, doi: 10.1109/gemic.2016.7461639.
[5]
S. Palm, R. Sommer, M. Caris, N. Pohl, A. Tessmann, and U. Stilla, “Ultra-high resolution SAR in lower terahertz domain for applications in mobile mapping,” in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, pp. 205–208, doi: 10.1109/gemic.2016.7461591.
[6]
D. Noetel, F. Kloeppel, S. Sieger, D. Janssen, and N. Pohl, “MIRANDA 35 GHz SAR based change detection,” in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, pp. 197–200, doi: 10.1109/gemic.2016.7461589.
[7]
S. Reible, R. Herschel, R. Brauns, D. Nubler, and N. Pohl, “Synthesis and design of narrowband bandpass filters in waveguide technique,” in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, pp. 77–80, doi: 10.1109/gemic.2016.7461560.
[8]
B. Welp, K. Noujeim, and N. Pohl, “A wideband 20 to 28 GHz signal generator MMIC With 30.8 dBm output power based on a power amplifier cell with 31% PAE in SiGe,” IEEE journal of solid state circuits / Institute of Electrical and Electronics Engineers, vol. 51, no. 9, pp. 1975–1984, Jun. 2016, doi: 10.1109/jssc.2016.2570940.
[9]
T. Geibig, A. Shoykhetbrod, A. Hommes, R. Herschel, and N. Pohl, “Compact 3D imaging radar based on FMCW driven frequency-scanning antennas,” in 2016 IEEE Radar Conference (RadarConf 2016), Philadelphia, PA, 2016, pp. 554–558, doi: 10.1109/radar.2016.7485168.
[10]
S. Wang, V. Nolden, G. Briese, S. A. Lang, and N. Pohl, “Effects of radar position errors on near range ultrawideband 3D-SAR imaging,” in EUSAR 2016, Hamburg, 2016, pp. 894–897 [Online]. Available: https://ieeexplore.ieee.org/document/7559439
[11]
H. Çetinkaya, S. Kueppers, R. Herschel, and N. Pohl, “Comparison of near and far field focusing patterns for two-dimensional sparse MIMO arrays,” in 2016 10th European Conference on Antennas and Propagation (EuCAP 2016), Davos, 2016, pp. 123–126, doi: 10.1109/eucap.2016.7481127.
[12]
D. Nüßler et al., “T-sense: The new generation of non-contact transmission imaging with non-ionizing radiation,” in World conference on non-destructive testing, München, 2016, vol. 158.
[13]
R. Herschel, G. Briese, S. A. Lang, and N. Pohl, “Focused imaging by geometric optics for real-time passenger screening at sub-millimetre wave frequencies,” in 2016 European Radar Conference (EuRAD 2016), London, 2016, pp. 402–405 [Online]. Available: https://ieeexplore.ieee.org/document/7811732
[14]
M. Caris, S. Stanko, W. Johannes, S. Sieger, and N. Pohl, “Detection and tracking of micro aerial vehicles with millimeter wave radar,” in 2016 European Radar Conference (EuRAD 2016), London, 2016, pp. 406–408 [Online]. Available: https://ieeexplore.ieee.org/document/7811733
[15]
S. Stanko, S. Palm, R. Sommer, F. Klöppel, M. Caris, and N. Pohl, “Millimeter resolution SAR imaging of infrastructure in the lower THz region using MIRANDA-300,” in 2016 European Radar Conference (EuRAD 2016), London, 2016, pp. 358–361 [Online]. Available: https://ieeexplore.ieee.org/document/7811721
[16]
D. Nüßler et al., “Innovative technologies as enabler for sorting of black plastics,” in World conference on non-destructive testing, München, 2016, vol. 158.
[17]
G. Hasenäcker, M. van Delden, T. Jaeschke, N. Pohl, K. Aufinger, and T. Musch, “A SiGe fractional-N frequency synthesizer for mm-wave wideband FMCW radar transceivers,” IEEE transactions on microwave theory and techniques, vol. 64, no. 3, pp. 847–858, Feb. 2016, doi: 10.1109/tmtt.2016.2520469.
[18]
S. M. Palm, R. Sommer, A. Hommes, N. Pohl, and U. Stilla, “Mobile mapping by FMCW synthetic aperture radar operating at 300 GHZ,” in XXIII ISPRS Congress, Commission I, Prag, 2016, pp. 81–87, doi: 10.5194/isprsarchives-xli-b1-81-2016.
[19]
R. Herschel, S. A. Lang, and N. Pohl, “MIMO imaging for next generation passenger security systems,” in EUSAR 2016, Hamburg, 2016, pp. 87–90 [Online]. Available: https://ieeexplore.ieee.org/document/7559252
[20]
S. Palm, R. Sommer, N. Pohl, and U. Stilla, “Airborne SAR on circular trajectories to reduce layover and shadow effects of urban scenes,” in Remote sensing technologies and applications in urban environments, Edinburgh, Oct. 2016, vol. 10008, doi: 10.1117/12.2242269.
[21]
A. Shoykhetbrod, T. Geibig, A. Hommes, R. Herschel, and N. Pohl, “Concept for a fast tracking 60 GHz 3D-radar using frequency scanning antennas,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Dec. 2016, doi: 10.1109/irmmw-thz.2016.7758541 [Online]. Available: https://ieeexplore.ieee.org/document/7758541
[22]
S. Nowok, R. Herschel, R. Zimmermann, A. Shoykhetbrod, S. A. Lang, and N. Pohl, “3D imaging system based on a MIMO approach at 360GHz for security screening,” in 2016 Progress in Electromagnetics Research Symposium (PIERS), Shanghai , Nov. 2016, pp. 671–675, doi: 10.1109/piers.2016.7734419 [Online]. Available: https://ieeexplore.ieee.org/document/7734419
[23]
T. Jaeschke, C. Bredendiek, S. Küppers, C. Schulz, C. Baer, and N. Pohl, “Cross-polarized multi-channel W-band radar for turbulent flow velocity measurements,” in 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francissco, Ca., 2016, doi: 10.1109/mwsym.2016.7540256.
[24]
R. Herschel, S. Nowok, R. Zimmermann, S. A. Lang, and N. Pohl, “MIMO based 3D imaging system at 360 GHz,” in Passive and Active Millimeter-Wave Imaging XIX, May 2016, vol. 9830, doi: 10.1117/12.2218435.
[25]
N. Pohl, “Welcome messages,” in 2016 German Microwave Conference GeMiC 2016, Bochum, May 2016, doi: 10.1109/gemic.2016.7461537.
2015
[1]
N. Pohl, “Advanced SiGe-circuits for mm-Wave radar applications,” Sep. 06, 2015.
[2]
M. Deilmann et al., “Microwave module,” 201514753532.
[3]
N. Pohl, “New radar applications in the THz frequency range,” May 29, 2015.
[4]
N. Pohl, “Millimeter wave radar imaging for security and industrial applications,” May 18, 2015.
[5]
N. Pohl, “Millimeter wave radar imaging for security and industrial applications,” May 17, 2015.
[6]
N. Pohl, “Ultra high resolution millimeter wave radar based on SiGe integrated circuits,” Apr. 01, 2015.
[7]
S. Thomas, C. Bredendiek, and N. Pohl, “Comparison of inductor types for phase noise optimized oscillators in SiGe at 34 GHz,” in 2015 German Microwave Conference (GeMiC 2015), Nürnberg, 2015, pp. 288–291, doi: 10.1109/gemic.2015.7107810.
[8]
N. Pohl, S. Stanko, M. Caris, A. Tessmann, and M. Schlechtweg, “An ultra-high resolution radar-system operating at 300 GHz,” in 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet 2015), San Diego, Calif., 2015, pp. 62–64, doi: 10.1109/wisnet.2015.7127406.
[9]
G. Hasenäcker, H.-M. Rein, K. Aufinger, N. Pohl, and T. Musch, “A SiGe differential 50 ps Gaussian pulse generator for sub-sampling TDR measurements,” in 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2015, pp. 4–6, doi: 10.1109/sirf.2015.7119856.
[10]
M. Caris, W. Johannes, S. Stanko, and N. Pohl, “Millimeter wave radar for perimeter surveillance and detection of MAVs (Micro Aerial Vehicles),” in 2015 16th International Radar Symposium (IRS 2015), Dresden, 2015, pp. 284–287, doi: 10.1109/irs.2015.7226314.
[11]
S. Palm, N. Pohl, and U. Stilla, “Challenges and potentials using multi aspect coverage of urban scenes by airborne SAR on circular trajectories,” in PIA15 + HRIGI15 - Joint ISPRS Conference, München, 2015, vol. 40, 3, pp. 149–154, doi: 10.5194/isprsarchives-xl-3-w2-149-2015.
[12]
S. Ayhan et al., “Millimeter-wave radar distance measurements in micro machining,” in 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet 2015), San Diego, Calif., 2015, pp. 65–68, doi: 10.1109/wisnet.2015.7127413.
[13]
S. Wang et al., “A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs,” in 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015), Mailand, 2015, pp. 4978–4981, doi: 10.1109/embc.2015.7319509.
[14]
T. Jaeschke, P. Imberg, M. Zapke, M. Hübner, and N. Pohl, “Scalable modular hardware platform for FPGA based industrial radar flowmeters,” in 2015 International Conference on Reconfigurable Computing and FPGAs (ReConFig15), Cancún, 2015, doi: 10.1109/reconfig.2015.7393357.
[15]
S. A. Lang, M. Demming, T. Jaeschke, K. M. Noujeim, A. Konynenberg, and N. Pohl, “3D SAR imaging for dry wall inspection using an 80 GHz FMCW radar with 25 GHz bandwidth,” in 2015 IEEE MTT-S International Microwave Symposium (IMS 2015), Phoenix, Ariz., 2015, pp. 584–588, doi: 10.1109/mwsym.2015.7166863.
[16]
N. Pohl, “High resolution mmWave radar for industrial and medical applications,” in 2015 IEEE MTT-S International Microwave Symposium (IMS 2015), Phoenix, Ariz., 2015.
[17]
C. Krebs, S. Gütgemann, D. Nüßler, N. Pohl, B. Fischer, and H. Krauthäuser, “Radarsystem misst Breite von Brammen,” Qualität und Zuverlässigkeit, vol. 60, no. 9, pp. 42–44, 2015.
[18]
N. Pohl, “THz imaging,” 2015.
[19]
S. A. Lang, R. Herschel, S. Nowok, R. Zimmermann, and N. Pohl, “3D mimo imaging at 360 GHZ for security screening,” in Security Research Conference, J. Beyerer, A. Meissner, and J. Geisler, Eds. Stuttgart: Fraunhofer IRB-Verlag, 2015, pp. 363–369.
[20]
D. Nüßler, P. Warok, and N. Pohl, “High frequency line cameras for sorting applications,” in OCM 2015 - 2nd International Conference on Optical Characterization of Materials, 2015, pp. 227–234, doi: 10.5445/ksp/1000032143.
[21]
B. Welp, K. M. Noujeim, and N. Pohl, “A 24GHz signal generator with 30.8 dBm output power based on a power amplifier with 24.7 dBm output power and 31% PAE in SiGe,” in 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM 2015), 2015, pp. 178–181, doi: 10.1109/bctm.2015.7340555.
[22]
M. Caris, S. Stanko, S. Palm, R. Sommer, and N. Pohl, “Synthetic aperture radar at millimeter wavelength for UAV surveillance applications,” in Leveraging a better tomorrow, 2015, pp. 349–352, doi: 10.1109/rtsi.2015.7325145.
[23]
M. Caris, S. Stanko, S. Palm, R. Sommer, A. Wahlen, and N. Pohl, “300 GHz radar for high resolution SAR and ISAR applications,” in 2015 16th International Radar Symposium (IRS 2015), Dresden, 2015, pp. 577–580, doi: 10.1109/irs.2015.7226313.
[24]
R. Herschel, S. Nowok, P. Warok, R. Zimmermann, S. A. Lang, and N. Pohl, “MIMO system for fast imaging at 90 GHz,” in 2015 European Microwave Conference (EuMC 2015), Paris, 2015, pp. 434–437, doi: 10.1109/eumc.2015.7345793.
[25]
D. Nüßler, R. Brauns, S. Heinen, S. Kose, and N. Pohl, “A fast rotating scanning approach for millimeter wave imaging,” in 2015 European Microwave Conference (EuMC 2015), Paris, 2015, pp. 442–445, doi: 10.1109/eumc.2015.7345795.
[26]
J. Barowski, D. Pohle, T. Jaeschke, N. Pohl, and I. Rolfes, “Characterizing surface profiles utilizing mm-wave FMCW SAR imaging,” in 2015 European Microwave Conference (EuMC 2015), Paris, 2015, pp. 446–449, doi: 10.1109/eumc.2015.7345796.
[27]
C. Baer, T. Jaeschke, N. Pohl, and T. Musch, “Contactless detection of state parameter fluctuations of gaseous media based on an mm-wave FMCW radar,” IEEE transactions on instrumentation and measurement / Institute of Electrical and Electronics Engineers, vol. 64, no. 4, pp. 865–872, 2015, doi: 10.1109/tim.2014.2374696.
[28]
M. van Delden, G. Hasenäcker, N. Pohl, K. Aufinger, and T. Musch, “An 80 GHz programmable frequency divider for wideband mm-wave frequency ramp synthesis,” in RFIT2015 proceedings, 2015, pp. 181–183, doi: 10.1109/rfit.2015.7377927.
2014
[1]
N. Pohl, “Hochpräzise Positionsmessung durch Millimeterwellen-Radartechnik,” Oct. 15, 2014.
[2]
N. Pohl, “Distance evaluation by FMCW radar,” Oct. 06, 2014.
[3]
N. Pohl, “Radar-on-Chip,” Jun. 26, 2014.
[4]
J. Ender et al., “RADAR for security & defence – recent developments at Fraunhofer-FHR,” Apr. 08, 2014.
[5]
C. Schmits et al., “Mikrowellenmodul,” 102014109120.
[6]
C. Weiss, P. Nordsiek, S. A. Lang, T. Jaeschke, and N. Pohl, “Radar based depth perception for safe navigation in smoke filled surroundings,” Mar. 14, 2014.
[7]
N. Pohl, “Current and future application requirements of mm-Wave radar sensors,” Feb. 13, 2014.
[8]
T. Jaeschke, C. Bredendiek, S. Küppers, and N. Pohl, “High-precision D-band FMCW-radar sensor based on a wideband SiGe-transceiver MMIC,” IEEE transactions on microwave theory and techniques, vol. 62, no. 12, pp. 3582–3597, 2014, doi: 10.1109/tmtt.2014.2365460.
[9]
A. Shoykhetbrod, A. Hommes, and N. Pohl, “A scanning FMCW-radar system for the detection of fast moving objects: sensors for sniper detection purposes,” in International Radar Conference (Radar 2014), 2014, pp. 792–796, doi: 10.1109/radar.2014.7060388.
[10]
M. Caris et al., “Very high resolution radar at 300 GHz,” in 2014 European Radar Conference (EuRAD 2014), Rom, 2014, pp. 494–496, doi: 10.1109/eurad.2014.6991315.
[11]
A. Hommes, A. Shoykhetbrod, and N. Pohl, “A fast tracking 60 GHz radar using a frequency scanning antenna,” in 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2014), Piscataway, NJ: IEEE, 2014.
[12]
J. Moll et al., “Luggage scanning at 80 GHz for harbor environments,” in EUSAR 2014, Berlin, 2014, pp. 1283–1286.
[13]
T. Jaeschke, C. Bredendiek, and N. Pohl, “SiGe-MMIC based D-band radar for accurate FMCW multi-target vibration measurements,” in 2014 IEEE MTT-S International Microwave Symposium (IMS 2014), Tampa, Fla., 2014, pp. 914–917, doi: 10.1109/mwsym.2014.6848497.
[14]
T. Jaeschke, C. Bredendiek, and N. Pohl, “3D FMCW SAR Imaging based on a 240 GHz SiGe transceiver chip with integrated antennas,” in GeMiC 2014, Aachen, 2014, vol. 246 [Online]. Available: http://ieeexplore.ieee.org/document/6775168/
[15]
S. Palm, W. Johannes, N. Pohl, and U. Stilla, “Monitoring weitreichender Gebiete durch SAR-Video Echtzeitprozessierung auf Kleinflugzeugen,” in Geoinformationen öffnen das Tor zur Welt, Hamburg, 2014, vol. 23, pp. 1–8 [Online]. Available: http://www.dgpf.de/neu/Proc2014/proceedings/papers/Beitrag247.pdf
[16]
S. Palm, A. Wahlen, S. Stanko, N. Pohl, P. Wellig, and U. Stilla, “Real-time onboard processing and ground based monitoring of FMCW-SAR videos,” in EUSAR 2014, Berlin, 2014, pp. 89–92.
[17]
W. Johannes et al., “Implementation of a 35 GHz SAR sensor and a high resolution camera to enable real-time observation,” in EUSAR 2014, Berlin, 2014, pp. 315–318.
[18]
D. Nüßler, N. Pohl, J. Kuels, K. Hein, and D. Stein, “THz imaging for recycling of black plastics,” in GeMiC 2014, Aachen, 2014, vol. 246 [Online]. Available: http://ieeexplore.ieee.org/document/6775176/
[19]
G. Hasenäcker, R. Storch, T. Musch, and N. Pohl, “Ultra low noise signal synthesis for the use in a FMCW MIMO radar system,” in 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC 2014), 2014, pp. 715–718, doi: 10.1109/apwc.2014.6905581.
[20]
C. Baer, T. Jaeschke, P. Mertmann, N. Pohl, and T. Musch, “A mmWave measuring procedure for mass flow monitoring of pneumatic conveyed bulk materials,” IEEE sensors journal / Institute of Electrical and Electronics Engineers, vol. 14, no. 9, pp. 3201–3209, 2014, doi: 10.1109/jsen.2014.2326042.
[21]
C. Baer, T. Musch, T. Jaeschke, and N. Pohl, “Contactless determination of gas concentration and pressure based on a low jitter mmWave FMCW radar,” in 2014 IEEE Sensors Applications Symposium (SAS 2014), Queenstown, 2014, pp. 11–14, doi: 10.1109/sas.2014.6798907.
2013
[1]
N. Pohl, D. Nüßler, R. Brauns, and 80686 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., “Kontinuierliche Reifenanalyse mittels Radar,” 102013016115 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102013016115A1
[2]
M. Deilmann, M. Gerding, N. Pohl, and 47058 Krohne Messtechnik GmbH, “Microwave window and fill level sensor using the radar principle,” 201310065507 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=CN000103292864A
[3]
M. Deilmann, M. Gerding, N. Pohl, and 47058 Krohne Messtechnik GmbH, “Mikrowellenfenster und nach dem Radar-Prinzip arbeitendes Füllstandmesssystem,” 13000656 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=EP000002634858A1
[4]
M. Deilmann, M. Gerding, N. Pohl, and U. Wegemann, “Nach dem Radar-Prinzip arbeitendes Füllstandmesssystem,” 13000113 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=EP000002623944A2
[5]
N. Pohl, “Hochpräzise Entfernungsmessung mit Millimeterwellen,” Jul. 04, 2013.
[6]
N. Pohl, “VCO-based frequency synthesis in SiGe for mmWave radar systems,” Jun. 02, 2013.
[7]
N. Pohl, H. Knapp, C. Bredendiek, and R. Lachner, “Next generation integrated SiGe mm-wave circuits for automotive radar sensors,” International journal of microwave and wireless technologies, vol. 5, no. 1, pp. 43–48, 2013, doi: 10.1017/s1759078712000736.
[8]
C. Schulz, C. Baer, N. Pohl, T. Musch, B. Will, and I. Rolfes, “A multi directional dielectric lens approach for antennas used in industrial RADAR applications,” in 2013 International Workshop on Antenna Technology (iWAT 2013), Karlsruhe, 2013, pp. 328–331, doi: 10.1109/iwat.2013.6518358.
[9]
G. Hasenäcker, N. Pohl, and T. Musch, “Frequency synthesis for high precision wideband millimeter wave radar systems using a SiGe bipolar chip,” in 2013 IEEE/MTT-S International Microwave Symposium (MTT 2013), Seattle, 2013, pp. 794–797, doi: 10.1109/mwsym.2013.6697560.
[10]
C. Bredendiek, N. Pohl, T. Jaeschke, K. Aufinger, and A. M. Bilgic, “A highly-linear low-power down-conversion mixer for monostatic broadband 80 GHz FMCW-radar transceivers,” in Progress in Electromagnetics Research Symposium 2012 (PIERS 2012 Kuala Lumpur), Kuala Lumpur, 2013, pp. 333–337.
[11]
C. Bredendiek, N. Pohl, T. Jaeschke, S. Thomas, K. Aufinger, and A. M. Bilgic, “A 24 GHz wideband monostatic FMCW radar system based on a single-channel SiGe bipolar transceiver chip,” International journal of microwave and wireless technologies, vol. 5, no. 3, pp. 309–317, 2013, doi: 10.1017/s1759078713000391.
[12]
C. Bredendiek, N. Pohl, T. Jaeschke, K. Aufinger, and A. M. Bilgic, “A 240 GHz single-chip radar transceiver in a SiGe bipolar technology with on-chip antennas and ultra-wide tuning range,” in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2013, Seattle, Wash., 2013, pp. 309–312, doi: 10.1109/rfic.2013.6569590.
[13]
T. Jaeschke, C. Bredendiek, and N. Pohl, “A 240 GHz ultra-wideband FMCW radar system with on-chip antennas for high resolution radar imaging,” in 2013 IEEE/MTT-S International Microwave Symposium (MTT 2013), Seattle, 2013, pp. 577–581, doi: 10.1109/mwsym.2013.6697495.
[14]
N. Pohl, T. Jaeschke, and M. Vogt, “An SiGe-chip-based 80 GHz FMCW-radar system with 25 GHz bandwidth for high resolution imaging,” in 2013 14th International Radar Symposium (IRS 2013), Dresden, 2013, pp. 239–244 [Online]. Available: http://ieeexplore.ieee.org/document/6581094/
[15]
T. Jaeschke, C. Bredendiek, and N. Pohl, “SiGe based wideband mm-wave imaging systems for security and quality assurance applications,” in International THz Conference 2013, Villach, 2013, vol. 296, pp. 95–100.
[16]
N. Pohl, T. Jaeschke, and M. Vogt, “VCO-based frequency synthesis in SiGe for mmWave radar systems,” 2013.
[17]
S. Traboulsi, V. Frascolla, N. Pohl, J. Hausner, and A. M. Bilgic, “Energy-efficient hardware architectures for the packet data convergence protocol in LTE-advanced mobile terminals,” VLSI design, vol. 2013, no. 7, pp. 1–15, 2013, doi: 10.1155/2013/369627.
[18]
G. Hasenäcker, M. van Delden, N. Pohl, K. Aufinger, and T. Musch, “A 57 GHz programmable frequency divider for fractional-N frequency synthesizers,” in 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2013, pp. 45–48, doi: 10.1109/bctm.2013.6798141 [Online]. Available: http://dx.doi.org/10.1109/BCTM.2013.6798141
[19]
C. Schulz, B. Will, I. Rolfes, N. Pohl, C. Baer, and T. Musch, “Characterization of beam steering lens antenna for industrial radar measurements in harsh environments,” in 2013 European Radar Conference (EuRAD 2013), Nürnberg, 2013, pp. 117–120 [Online]. Available: https://ieeexplore.ieee.org/document/6689127
[20]
N. Pohl et al., “Radar measurements with micrometer accuracy and nanometer stability using an ultra-wideband 80 GHz radar system,” in 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet 2013), Austin, Tex., 2013, pp. 31–33, doi: 10.1109/wisnet.2013.6488624.
[21]
C. Baer, P. Mertmann, T. Musch, T. Jaeschke, and N. Pohl, “A measuring method for the mass flow determination in a pneumatic conveying system,” in 2013 IEEE sensors, Baltimore, Md., 2013, pp. 818–821, doi: 10.1109/icsens.2013.6688333.
2012
[1]
M. Deilmann, M. Gerding, N. Pohl, and 47058 Krohne Messtechnik GmbH, “Nach dem Radar-Prinzip arbeitendes Füllstandmesssystem,” 102012003948 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102012003948B4
[2]
M. Deilmann, M. Gerding, N. Pohl, and 47058 Krohne Messtechnik GmbH, “Microwave window and fill level sensor using the radar principle,” 201213659293 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=US020130228011A1
[3]
N. Pohl, T. Jaeschke, and C. Bredendiek, “An ultra-wideband 80 GHz radar system for high resolution measurements based on a SiGe transceiver chip,” Sep. 24, 2012.
[4]
N. Pohl, T. Jaeschke, and C. Bredendiek, “High-resolution mm-Wave radar measurements using a fully integrated SiGe transceiver chip,” May 31, 2012.
[5]
C. Schulz, C. Baer, N. Pohl, T. Musch, and I. Rolfes, “Konzept zur multistatischen Strahlschwenkung einer dielektrischen ellipsoidalen Antenne für industrielle Radaranwendungen bei 24 GHz,” May 31, 2012.
[6]
H. Essen, R. Zimmermann, S. Hantscher, and N. Pohl, “3D millimetre-wave scanner for luggage and parcels,” in Millimetre wave and terahertz sensors and technology V, Edinburgh, 2012, vol. 8544, pp. 1–8, doi: 10.1117/12.974866.
[7]
N. Pohl, T. Jaeschke, and K. Aufinger, “An ultra-wideband 80 GHz FMCW radar system using a SiGe bipolar transceiver chip stabilized by a fractional-N PLL synthesizer,” IEEE transactions on microwave theory and techniques, vol. 60, no. 3, pp. 757–765, 2012, doi: 10.1109/tmtt.2011.2180398.
[8]
R. Storch, G. Hasenäcker, N. Pohl, and T. Musch, “A DC to 5 GHz TDR pulse generating unit with a highly stable timebase for use in a plasma diagnostic measurement system,” in 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS 2012), 2012, pp. 267–270, doi: 10.1109/icwits.2012.6417678.
[9]
T. Jaeschke, M. Vogt, C. Baer, C. Bredendiek, and N. Pohl, “Improvements in distance measurement and SAR-imaging applications by using ultra-high resolution mm-wave FMCW radar systems,” in 2012 IEEE/MTT-S International Microwave Symposium digest (MTT 2012), Montreal, 2012, pp. 1330–1332, doi: 10.1109/mwsym.2012.6259621.
[10]
C. Bredendiek, N. Pohl, T. Jaeschke, S. Thomas, K. Aufinger, and A. M. Bilgic, “A 24GHz wideband single-channel SiGe bipolar transceiver chip for monostatic FMCW radar systems,” in 2012 7th European Microwave Integrated Circuit Conference (EuMIC 2012), 2012, pp. 309–312 [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6483798
[11]
N. Pohl, T. Jaeschke, and M. Vogt, “Ultra high resolution SAR imaging using an 80 GHz FMCW-radar with 25 GHz bandwidth,” in Electronic proceedings / EUSAR 2012, Nürnberg, 2012, pp. 189–192 [Online]. Available: http://ieeexplore.ieee.org/document/6217012/
[12]
T. Jaeschke, M. Vogt, C. Bredendiek, and N. Pohl, “Advantages of using broadband millimeter wave radar sensors for high precision distance measurements and SAR imaging: Session 1P6, Millimetre and submillimetre wave radar systems,” Progress in Electromagnetics Research Symposium 2012 (PIERS 2012 Kuala Lumpur). Curran, Red Hook, NY, p. 172, 2012.
[13]
N. Pohl, T. Klein, K. Aufinger, and H.-M. Rein, “A low-power wideband transmitter front-end chip for 80 GHz FMCW radar systems with integrated 23 GHz downconverter VCO,” IEEE journal of solid state circuits / Institute of Electrical and Electronics Engineers, vol. 47, no. 9, pp. 1974–1980, 2012, doi: 10.1109/jssc.2012.2201272.
[14]
S. Traboulsi, N. Pohl, J. Hausner, A. M. Bilgic, and V. Frascolla, “Power analysis and optimization of the ZUC stream cipher for LTE-advanced mobile terminals,” in 2012 IEEE 3rd Latin American Symposium on Circuits and Systems (LASCAS 2012), Playa del Carmen, 2012, pp. 21–24, doi: 10.1109/lascas.2012.6180296.
[15]
C. Bredendiek, N. Pohl, K. Aufinger, and A. M. Bilgic, “An ultra-wideband D-band signal source chip using a fundamental VCO with frequency doubler in a SiGe bipolar tchnology,” in 2012 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2012), Montreal, 2012, pp. 83–86, doi: 10.1109/rfic.2012.6242237.
[16]
T. Jaeschke, C. Bredendiek, M. Vogt, and N. Pohl, “Fractional-N PLL based FMCW sweep generator for an 80 GHz radar system with 24.5 GHz bandwidth,” Advances in radio science, vol. 10, pp. 7–11, 2012, doi: 10.5194/ars-10-7-2012.
[17]
S. Traboulsi, V. Frascolla, N. Pohl, J. Hausner, and A. M. Bilgic, “A versatile low-power ciphering and integrity protection unit for LTE-advanced mobile devices,” in 2012 IEEE 10th International New Circuits and Systems Conference (NEWCAS), 2012, pp. 317–320, doi: 10.1109/newcas.2012.6329020.
[18]
C. Bredendiek, N. Pohl, K. Aufinger, and A. M. Bilgic, “Differential signal source chips at 150 GHz and 220 GHz in SiGe bipolar technologies based on Gilbert-Cell frequency doublers,” in 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM 2012), 2012, pp. 173–176, doi: 10.1109/bctm.2012.6352640.
[19]
N. Pohl and M. Gerding, “A dielectric lens-based antenna concept for high-precision industrial radar measurements at 24GHz,” in 2012 9th European Radar Conference (EuRAD 2012), 2012, pp. 405–408 [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6450724&refinements%3D4280087737%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6450609%29
[20]
N. Pohl and M. Gerding, “A dielectric lens-based antenna concept for high-precision industrial radar measurements at 24 GHz,” in 2012 42nd European Microwave Conference (EuMC 2012), Amsterdam, 2012, pp. 731–734, doi: 10.23919/eumc.2012.6459227.
[21]
C. Schulz, C. Baer, N. Pohl, T. Musch, and I. Rolfes, “A multistatic feeding concept for beam steering based on a dielectric ellipsoidal antenna,” in 2012 Asia Pacific Microwave Conference proceedings (APMC 2012), Kaohsiung, Taiwan, 2012, pp. 286–288, doi: 10.1109/apmc.2012.6421574.
[22]
G. Hasenäcker, N. Pohl, H. Knapp, and T. Musch, “An 8 bit programmable 18 GHz frequency divider for mm-wave frequency synthesis,” in 2012 7th European Microwave Integrated Circuit Conference (EuMIC 2012), 2012, pp. 305–308 [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6483797&tag=1
[23]
C. Baer, N. Pohl, M. Gerding, M. Vogt, and T. Musch, “A broadband double transmission measurement concept for density determination of solid particle flows in pneumatic conveying systems with microwaves,” in Kleinheubacher Tagung 2011, Miltenberg, 2012.
2011
[1]
N. Pohl and 47058 Duisburg Krohne Meßtechnik GmbH & Co KG, “Circuit arrangement for creating microwave oscillations,” US 13/496,004.
[2]
N. Pohl and T. Musch, “Circuit arrangement for generation of radio frequency output signals which form a broadband frequency ramp,” US 13/519,024.
[3]
N. Pohl, T. Musch, and 47058 Krohne Messtechnik GmbH, “Schaltungsanordnung zur Erzeugung von eine breitbandige Frequenzrampe bildenden hochfrequenten Ausgangssignalen,” 11006843 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=EP000002421154B1
[4]
N. Pohl and T. Musch, “Schaltungsanordnung zur Erzeugung von eine breitbandige Frequenzrampe bildenden hochfrequenten Ausgangssignalen,” 102011110781 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102011110781A1
[5]
T. Jaeschke, M. Vogt, C. Bredendiek, and N. Pohl, “A PLL-stabilized 80 GHz FMCW radar with 24.5 GHz bandwidth for high precision distance measurements,” Sep. 26, 2011.
[6]
C. Baer, N. Pohl, M. Gerding, M. Vogt, and T. Musch, “A broadband double transmission measurement concept for density determination of solid particle flows in pneumatic conveying systems with microwaves (23 – 27 GHz),” Sep. 26, 2011.
[7]
N. Pohl, “Circuits and concepts for ultra-wideband radar systems at 80 GHz in SiGe,” Sep. 12, 2011.
[8]
N. Pohl, “Integrated SiGe circuits for high resolution mm-Wave radar sensors,” Jul. 11, 2011.
[9]
N. Pohl, “Integrated SiGe circuits for high resolution mmwave radar sensors,” Jul. 11, 2011.
[10]
N. Pohl and T. Jaeschke, “Bandwidth-enhancement on concept and circuit-level for high-resolution mmWave radar systems in SiGe,” Apr. 06, 2011.
[11]
N. Pohl and T. Jaeschke, “Bandwidth-enhancement on concept and circuit-level for high-resolution mmwave radar systems in SiGe,” in RADCOM 2011, Hamburg, 2011.
[12]
T. Jaeschke, M. Vogt, and N. Pohl, “An integrated broadband FMCW radar sensor for ultra high resolution SAR imaging at 80 GHz,” ESSPRITS 2011. University of Waterloo. Electrical & Computer Engineering, Waterloo, Ont., 2011 [Online]. Available: http://jcgw.uwaterloo.ca/abstracts.html
[13]
N. Pohl and T. Jaeschke, “Integrated SiGe transceiver circuits for ultra-wideband 80 GHz FMCW radar systems,” ESSPRITS 2011. University of Waterloo. Electrical & Computer Engineering, Waterloo, Ont., 2011 [Online]. Available: http://jcgw.uwaterloo.ca/abstracts.html
[14]
N. Pohl, T. Klein, K. Aufinger, and H.-M. Rein, “A low-power 80 GHz FMCW radar transmitter with integrated 23GHz downconverter VCO,” in 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM 2011), Atlanta, 2011, pp. 215–218, doi: 10.1109/bctm.2011.6082785.
[15]
N. Pohl, “Circuits and concepts for ultra-wideband radar systems at 80 GHz in SiGe,” 2011.
[16]
C. Schulz, N. Pohl, and I. Rolfes, “A broadband circular waveguide-to-microstrip transition for an 80 GHz FMCW radar system,” in 2011 Asia-Pacific Microwave Conference proceedings (APMC 2011), Melbourne, 2011, pp. 391–394 [Online]. Available: https://ieeexplore.ieee.org/document/6173768
[17]
G. Hasenäcker, N. Pohl, and T. Musch, “A programmable 7GHz frequency divider in a SiGe bipolar technology for highly linear fractional-N ramp generation,” in Sensor + Test Conference 2011, Nürnberg, 2011, pp. 429–432, doi: 10.5162/sensor11/c4.1.
[18]
C. Baer, T. Musch, M. Gerding, N. Pohl, and M. Vogt, “Evaluation of a double transmission measurement concept for the characterization of dielectric material compositions with microwaves,” in 9th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA 2011), Kansas City, Mo., 2011, pp. 15–21.
[19]
C. Baer, M. Gerding, N. Pohl, M. Vogt, and T. Musch, “Accurate double transmission measurement concepts for the permittivity determination in pneumatic conveying tubes with microwaves,” in 2011 Asia-Pacific Microwave Conference proceedings (APMC 2011), Melbourne, 2011, pp. 1814–1817 [Online]. Available: https://ieeexplore.ieee.org/document/6174125
2010
[1]
N. Pohl, T. Musch, and 47058 Krohne Messtechnik GmbH, “Schaltungsanordnung zur Erzeugung von eine breitbandige Frequenzrampe bildenden hochfrequenten Ausgangssignalen,” 2011004209.
[2]
N. Pohl, “Frequenzsynthesizer,” 102010011128 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102010011128A1
[3]
N. Pohl, “Frequenzsynthesizer,” 102010011128 [Online]. Available: https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20110915&DB=&locale=de_EP&CC=DE&NR=102010011128A1&KC=A1&ND=4
[4]
N. Pohl, “Systemkonzepte und SiGe-Bipolarschaltungen für ein 80-GHz-Radarsystem mit hoher Bandbreite,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2010.
[5]
N. Pohl, “A dielectric lens antenna with enhanced aperture efficiency for industrial radar applications,” in 2010 IEEE Middle East Conference on Antennas and Propagation (MECAP 2010), Kairo, 2010, pp. 126–130, doi: 10.1109/mecap.2010.5724171.
[6]
N. Pohl and J. Hausner, “Systemkonzepte und SiGe-Bipolarschaltungen für ein 80 GHz-Radarsystem mit hoher Bandbreite,” Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2010.
[7]
N. Pohl, H.-M. Rein, T. Musch, K. Aufinger, and J. Hausner, “Investigation and reduction of frequency pulling in SiGe mm-wave VCOs at limited power consumption,” in 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM 2010), Austin, 2010, pp. 69–72, doi: 10.1109/bipol.2010.5667954.
2009
[1]
M. Gerding, T. Musch, and N. Pohl, “Dielektrische Antenne,” 09005394 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=EP000002112482B1
[2]
M. Gerding, T. Musch, and N. Pohl, “Dielectric antenna,” 42637409 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=US000008242965B2
[3]
M. Gerding, T. Musch, and N. Pohl, “Dielectric antenna,” 200910159522 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=CN000101593873A
[4]
M. Gerding, T. Musch, and N. Pohl, “Dielectric antenna,” 2009102787 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=JP002009268094A
[5]
N. Pohl, G. Armbrecht, and B. Schiek, “Dielektrische Hornantenne,” 20081015409Sep. 30, 2009 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102008015409A1
[6]
G. Armbrecht, E. Denicke, C. Zietz, N. Pohl, T. Musch, and I. Rolfes, “Advances in industrial radar level measurements,” Jun. 24, 2009.
[7]
N. Pohl, H.-M. Rein, T. Musch, K. Aufinger, and J. Hausner, “Design of low-power ultra-wideband SiGe mmwave VCOs,” May 29, 2009.
[8]
G. Armbrecht, E. Denicke, C. Zietz, N. Pohl, T. Musch, and I. Rolfes, “Advances in industrial radar level measurements,” in Electrical and electronic engineering for communication, 2009, 2009.
[9]
G. Armbrecht, E. Denicke, N. Pohl, T. Musch, and I. Rolfes, “Dielectric travelling wave antennas incorporating cylindrical inserts with tapered cavities,” in 2009 3rd European Conference on Antennas and Propagation (EuCAP), Berlin, 2009, pp. 3090–3094 [Online]. Available: https://ieeexplore.ieee.org/document/5068257
[10]
N. Pohl, H.-M. Rein, T. Musch, K. Aufinger, and J. Hausner, “SiGe bipolar VCO with ultra-wide tuning range at 80 GHz center frequency,” IEEE journal of solid state circuits / Institute of Electrical and Electronics Engineers, vol. 44, no. 10, pp. 2655–2662, 2009, doi: 10.1109/jssc.2009.2026822.
[11]
M. Gerding, T. Musch, and N. Pohl, “Dielektrische Antenne,” 09005394 [Online]. Available: https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20140101&DB=&locale=en_EP&CC=EP&NR=2112482B1&KC=B1&ND=5
2008
[1]
N. Pohl and 47058 Duisburg Krohne Meßtechnik GmbH & Co KG, “Schaltungsanordnung zur Erzeugung von Mikrowellen-Schwingungen,” 102008061254 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102008061254A1
[2]
N. Pohl and 47058 Duisburg Krohne Meßtechnik GmbH & Co KG, “Dielektrische Antenne,” 102008008715 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102008008715A1
[3]
N. Pohl, H.-M. Rein, T. Musch, K. Aufinger, and J. Hausner, “Design aspects of ultra-wideband millimeter-wave radar systems in a SiGe technology,” Sep. 24, 2008.
[4]
E. Denicke, G. Armbrecht, H. Rabe, N. Pohl, T. Musch, and I. Rolfes, “Dielectric antenna design and its impact on radar distance measurement accuracy,” Sep. 22, 2008.
[5]
N. Pohl, H.-M. Rein, T. Musch, K. Aufinger, and J. Hausner, “Design aspects of ultra-wideband millimeter-wave radar systems in a SiGe technology,” Sep. 22, 2008.
[6]
G. Armbrecht, E. Denicke, N. Pohl, T. Musch, and I. Rolfes, “Compact directional UWB antenna with dielectric insert for radar distance measurements,” in 2008 International Conference on Ultra-Wideband, Hannover, 2008, pp. 229–232, doi: 10.1109/icuwb.2008.4653325.
[7]
G. Armbrecht, E. Denicke, N. Pohl, T. Musch, and I. Rolfes, “Obstacle based concept for compact mode-preserving waveguide transitions for high-precision radar level measurements,” in 2008 European Microwave Integrated Circuits Conference, Amsterdam, 2008, pp. 472–475, doi: 10.1109/eumc.2008.4751491.
[8]
G. Armbrecht, E. Denicke, I. Rolfes, N. Pohl, T. Musch, and B. Schiek, “Compact mode-matched excitation structures for radar distance measurements in overmoded circular waveguides,” Advances in radio science, vol. 6, pp. 9–17, 2008, doi: 10.5194/ars-6-9-2008.
[9]
N. Pohl, H.-M. Rein, T. Musch, K. Aufinger, and J. Hausner, “An 80 GHz SiGe bipolar VCO with wide tuning range using two simultaneously tuned varactor pairs,” in 2008 IEEE CSIC Symposium, 30, 2008, pp. 162–166, doi: 10.1109/csics.2008.46.
2007
[1]
N. Pohl, G. Armbrecht, I. Rolfes, T. Musch, J. Hausner, and B. Schiek, “Antenna far-field characterisation based on calibrated measurements of the electric and magnetic near-field components,” Sep. 27, 2007.
[2]
N. Pohl, M. Gerding, B. Will, T. Musch, J. Hausner, and B. Schiek, “High precision radar distance measurements in overmoded circular waveguides,” IEEE transactions on microwave theory and techniques, vol. 55, no. 6, pp. 1374–1381, 2007, doi: 10.1109/tmtt.2007.896784.
[3]
T. Musch, N. Pohl, I. Rolfes, and J. Hausner, “A low noise fractional-N approach with a short periodicity of the division factor sequences,” Proceedings of the European Microwave Association, vol. 3, no. 2, pp. 84–92, 2007.
2006
[1]
T. Musch, N. Pohl, M. Gerding, B. Will, J. Hausner, and B. Schiek, “Radar distance measurements in over-sized circular waveguides,” Sep. 25, 2006.
[2]
T. Musch, N. Pohl, M. Gerding, B. Will, J. Hausner, and B. Schiek, “Radar distance measurements in over-sized circular waveguides,” in 2006 European Microwave Conference, Manchester, 2006, pp. 1758–1761, doi: 10.1109/eumc.2006.281101.
2005
[1]
T. Musch, N. Pohl, and B. Schiek, “Ein pseudofraktionaler Synthesegenerator mit filterbaren spektralen Störlinien und gutem Phasenrauschen,” Sep. 30, 2005.
[2]
T. Musch, N. Pohl, and B. Schiek, “Ein pseudofraktionaler Synthesegenerator mit filterbaren spektralen Störlinien und gutem Phasenrauschen,” Sep. 30, 2005.
[3]
N. Pohl and B. Schiek, “Entwicklung von Koppelstrukturen zur mono-modigen Anregung von übermodeten Rundhohlleitern,” 2005.