Dr.-Ing. Jan Barowski

Akademischer Rat, Hochfrequenzsysteme

Adresse:
Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Hochfrequenzsysteme
Universitätsstraße 150
D-44801 Bochum

Raum:
ID 04/348

Telefon:
(+49)(0)234 / 32 - 24459

E-Mail:
jan.barowski[at]rub.de

Website:
www.etit.ruhr-uni-bochum.de/hfs/

2025

[1]
K. Dausien, T. Körner, J. Barowski, C. Baer, I. Rolfes, und C. Schulz, „Investigations on a Fluidic THz True Time Delay Based on a Dielectric Slot Waveguide“, in 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP), Cartagena de Indias, Feb. 2025, Publiziert. doi: 10.1109/lacap63752.2024.10876252.
[2]
T. Körner u. a., „Simultaneous Localization and Mapping (SLAM) for Room Exploration Using Ultrawideband Millimeterwave FMCW Radar“, IEEE journal of microwaves, Bd. 5, Nr. 2, S. 344–355, 2025, doi: 10.1109/jmw.2025.3541789.
[3]
K. Dausien, F. Schenkel, J. Altholz, L. Pio­trow­sky, N. Pohl, und J. Barowski, „An Overview on Millimeterwave FMCW Radar Techniques for Precise Ranging and Material Imaging“, in 2025 International Conference on Mobile and Miniaturized Terahertz Systems (ICMMTS), Dubai , März 2025, Publiziert. doi: 10.1109/icmmts62835.2025.10925997.
[4]
K. Dausien u. a., „Dielectric waveguide ring resonator-based biosensor for dielectric fluid spectroscopy in the THz domain“, in Microfluidics, BioMEMS, and Medical Microsystems XXIII , San Francisco, März 2025, Bd. 13312. doi: 10.1117/12.3041853.

2024

[1]
A. Batra u. a., „Millimeter wave indoor SAR sensing assisted with chipless tags-based self-localization system: experimental evaluation“, IEEE sensors journal / Institute of Electrical and Electronics Engineers, Bd. 24, Nr. 1, S. 844–857, Jan. 2024, doi: 10.1109/jsen.2023.3332431.
[2]
J. Schorlemer, J. Altholz, J. Barowski, C. Baer, I. Rolfes, und C. Schulz, „A radar echo simulator for the synthesis of randomized training data sets in the context of AI-based applications“, Sensors, Bd. 24, Nr. 3, Art. Nr. 836, Jan. 2024, doi: 10.3390/s24030836.
[3]
R. Schmitz u. a., „Classification of range-doppler radar echoes for condition monitoring in industrial processes“, in 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Kapstadt, Jan. 2024, Publiziert. doi: 10.1109/icecet58911.2023.10389316.
[4]
K. Dausien, M. Kleinschmidt, I. Rolfes, N. Pohl, und J. Barowski, „Robotic Antenna Characterization System Based on Wideband FMCW Transceiver Modules“, in 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, Apr. 2024, Publiziert. doi: 10.23919/eucap60739.2024.10501074.
[5]
L. Schmitt, K. Dausien, M. Burfeindt, J. Barowski, und M. Hoffmann, „Dielectric silicon slot-waveguides for far-infrared THz-spectroscopy“, in Terahertz Photonics III, Strasbourg, Juni 2024, Bd. 12994. doi: 10.1117/12.3017547.
[6]
R. Schmitz u. a., „Radar-Based Condition Monitoring for Enhanced Efficiency and Safety in Industrial Processes“, in 2024 International Radar Symposium (IRS), Warschau, 2024, Publiziert. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/10644969
[7]
N. Muckermann, M. A. Abdelmaksoud, J. Romstadt, M. Funk, J. Barowski, und N. Pohl, „FDM/FFF printed dielectric farfield lens antenna using cyclic olefin copolymer filament“, in 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI): proceedings, Florenz, Sep. 2024, Publiziert. doi: 10.1109/ap-s/inc-usnc-ursi52054.2024.10687048.
[8]
J. Romstadt u. a., „Proving the Feasibility of D-Band Single SiGe MMIC Vector Network Analyzer Extension Modules with Large System Dynamic Range“, IEEE journal of microwaves, Bd. 4, Nr. 4, S. 706–720, Sep. 2024, doi: 10.1109/jmw.2024.3444040.
[9]
K. Dausien u. a., „Investigation on LNN-self-calibration procedures for dielectric waveguide measurements“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, 2024, S. 442–446. doi: 10.1109/iceaa61917.2024.10701676.
[10]
R. Schmitz u. a., „Classification of range-doppler radar echoes for condition monitoring in industrial processes: shallow learning versus deep learning“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, 2024, S. 582–584. doi: 10.1109/iceaa61917.2024.10701584.
[11]
K. Dausien, L. Schmitt, C. Schulz, I. Rolfes, M. Hoffmann, und J. Barowski, „Dielectric Slot-Waveguide Interconnection for THz Systems“, in 2024 54th European Microwave Conference (EuMC), Paris, Okt. 2024, S. 592–595. doi: 10.23919/eumc61614.2024.10732473.
[12]
N. Muckermann, R. Schmitz, J. Barowski, und N. Pohl, „A Fresnel-based lens antenna with reduced antenna reflections for millimeter wave radar“, in 2024 54th European Microwave Conference (EuMC), Paris, Okt. 2024, S. 268–271. doi: 10.23919/eumc61614.2024.10732805.
[13]
M. Funk, I. Barengolts, C. Schulz, J. Barowski, und I. Rolfes, „Material characterization of various soil types using the transmission reflection method in a free-space setup“, in 2024 54th European Microwave Conference (EuMC), Paris, Okt. 2024, S. 648–651. doi: 10.23919/eumc61614.2024.10732458.
[14]
M. Funk, I. Barengolts, J. Altholz, J. Barowski, C. Schulz, und I. Rolfes, „Ultra-broadband material characterization in W- and D-band using a free-space setup“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, Okt. 2024, S. 288–290. doi: 10.1109/iceaa61917.2024.10701940.
[15]
I. Barengolts u. a., „Radar-based tomography with filtered backprojection using attenuation and time shift profiles of a reference reflection“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, Okt. 2024, S. 569–572. doi: 10.1109/iceaa61917.2024.10701682.
[16]
A. Al-Tayar u. a., „Non-destructive testing using filtered backprojection tomography with focusing lens antennas in the W- and D-band“, in 2024 21st European Radar Conference (EuRAD), Paris, France, Nov. 2024, S. 228–231. doi: 10.23919/eurad61604.2024.10734863.
[17]
T. Körner, J. Altholz, I. Rolfes, und J. Barowski, „A D-band radar-based channel measurement setup for joint communication and sensing“, in 2024 21st European Radar Conference (EuRAD), Paris, France, 2024, S. 453–456. doi: 10.23919/eurad61604.2024.10734897.
[18]
T. Körner, J. Wagner, A. Chertkov, J. Barowski, I. Rolfes, und C. Schulz, „Investigation of environmental influences on radar measurements in the W- and D-band“, in IEEE Sensors 2024, Kobe, Dez. 2024, Publiziert. doi: 10.1109/sensors60989.2024.10784799.
[19]
S. Gerling, T. Körner, J. Altholz, C. Schulz, J. Barowski, und I. Rolfes, „A compact description of directive antennas in numerical microwave simulations based on complex source beams“, in Proceedings of the 2024 15th German Microwave Conference, Duisburg, Apr. 2024, S. 101–104. doi: 10.23919/gemic59120.2024.10485312.

2023

[1]
J. Barowski, L. Schmitt, K. Dausien, und M. Hoffmann, „Design, simulation, and characterization of MEMS-based slot waveguides“, IEEE transactions on microwave theory and techniques, Bd. 71, Nr. 9, S. 3819–3828, März 2023, doi: 10.1109/tmtt.2023.3255589.
[2]
S. Abouzaid, T. Jaeschke, S. Kueppers, J. Barowski, und N. Pohl, „Deep learning-based material characterization using FMCW radar with open-set recognition technique“, IEEE transactions on microwave theory and techniques, Bd. 2023, Mai 2023, doi: 10.1109/tmtt.2023.3276053.
[3]
M. Burfeindt, K. Dausien, L. Schmitt, J. Barowski, I. Rolfes, und M. Hoffmann, „Approaching dielectric silicon slot waveguides for THz frequencies by simulation from optical and electrical points of view“, in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, Publiziert. doi: 10.1109/iwmts58186.2023.10207848.
[4]
I. Barengolts, J. Altholz, R. Schmitz, I. Rolfes, und J. Barowski, „Investigation on internal wall defects of pipes using FMCW radar imaging methods“, gehalten auf der European Microwave Conference (EuMC), Berlin, 20. September 2023, Publiziert.
[5]
R. Schmitz u. a., „Analysis of range-doppler radar echos for condition monitoring in industrial processes“, gehalten auf der European Microwave Conference (EuMC), Berlin, 21. September 2023, Publiziert.
[6]
B. Hattenhorst u. a., „Tracer particles with encapsulated resonators for electromagnetic localization and tracking in moving bulk materials“, in 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Venedig, Okt. 2023, S. 426–431. doi: 10.1109/iceaa57318.2023.10297728.
[7]
J. Romstadt u. a., „A D-band vector network analyzer extension module based on a SiGe reflectometer MMIC“, in 2023 IEEE/MTT-S International Microwave Symposium (IMS 2023), San Diego, Juli 2023, S. 927–930. doi: 10.1109/ims37964.2023.10188062.
[8]
D. Starke u. a., „A compact and fully integrated FMCW radar transceiver combined with a dielectric lens“, International journal of microwave and wireless technologies, Bd. 16, Nr. 5, S. 738–749, Dez. 2023, doi: 10.1017/s1759078723001368.
[9]
S. Gerling, T. Körner, J. Altholz, C. Schulz, J. Barowski, und I. Rolfes, „Efficient antenna pattern sampling using complex source beams for millimeter wave short range scenarios“, in European Microwave Conference 2023, Berlin, Okt. 2023, S. 536–539. doi: 10.23919/eumc58039.2023.10290154.
[10]
K. Dausien, J. Altholz, I. Rolfes, und J. Barowski, „Ultra wide band FMCW transceiver modules for milimeter wave spectrum analysis“, in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, Publiziert. doi: 10.1109/iwmts58186.2023.10207861.
[11]
N. Muckermann, J. Barowski, und N. Pohl, „Quasioptical Fresnel-based lens antenna with frequency-steerable focal length for millimeter wave radars“, International journal of microwave and wireless technologies, Bd. 16, Nr. 5, S. 712–719, Dez. 2023, doi: 10.1017/s1759078723001472.
[12]
K. Dausien, L. Schmitt, J. Barowski, M. Hoffmann, und I. Rolfes, „Simulation und Charakterisierung von dielektrischen MEMS-Spaltwellenleitern für den THz-Bereich “, in MikroSystemTechnik Kongress 2023, Dresden, 2023, S. 42–46.
[13]
N. Vorhauer-Huget u. a., „Dielectric and physico-chemical behavior of single thermally thick wood blocks under microwave assisted pyrolysis“, Particuology, Bd. 86, S. 291–303, Juli 2023, doi: 10.1016/j.partic.2023.07.004.
[14]
J. Altholz, F. Schenkel, N. Pohl, I. Rolfes, und J. Barowski, „Model-based sensor fusion approach for FMCW radar sensors in non-destructive testing“, in European Microwave Conference 2023, Berlin, 2023, Publiziert. doi: 10.23919/eumc58039.2023.10290699.
[15]
T. Körner, J. Altholz, S. Gerling, J. Barowski, C. Schulz, und I. Rolfes, „A fast physical optics framework for optimizing quasi optical millimeter wave measurement setups“, in European Microwave Conference 2023, Berlin, 2023, S. 532–535. doi: 10.23919/eumc58039.2023.10290450.
[16]
J. Schorlemer u. a., „Radar-based particle localization in densely packed granular assemblies“, Processes, Bd. 11, Nr. 11, Art. Nr. 3183, Nov. 2023, doi: 10.3390/pr11113183.
[17]
J. Wagner, T. Welling, N. Pohl, I. Rolfes, und J. Barowski, „Array design for automotive mimo radar sensors in d-band“, in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, Publiziert. doi: 10.1109/iwmts58186.2023.10207781.

2022

[1]
S. Küppers, T. Jaeschke, N. Pohl, und J. Barowski, „Versatile 126–182 GHz UWB D-band FMCW radar for industrial and scientific applications“, IEEE sensors letters / Institute of Electrical and Electronics Engineers, Bd. 6, Nr. 1, Art. Nr. 3500204, 2022, doi: 10.1109/lsens.2021.3130709.
[2]
L. Pio­trow­sky, J. Barowski, und N. Pohl, „Near-field effects on micrometer accurate ranging with ultra-wideband mmWave radar“, IEEE antennas and wireless propagation letters / Institute of Electrical and Electronics Engineers, Bd. 21, Nr. 5, S. 938–942, Feb. 2022, doi: 10.1109/lawp.2022.3152558.
[3]
T. Jaeschke, S. Kueppers, N. Pohl, und J. Barowski, „Calibrated and frequency traceable D-Band FMCW radar for VNA-like S-parameter measurements“, in 2022 IEEE Radio and Wireless Symposium, Las Vegas, Feb. 2022, S. 64–67. doi: 10.1109/rws53089.2022.9719876.
[4]
I. Barengolts, F. Schenkel, C. Schulz, J. Barowski, und I. Rolfes, „Temperature dependent dielectric characterization with partially loaded waveguides“, in Ulm 2022 GeMIC German Microwave Conference, Ulm, 2022, S. 228–231.
[5]
J. Wagner, C. Dahl, I. Rolfes, und J. Barowski, „A compact measurement setup for the validation of MIMO arrays in D-band and W-band“, in Ulm 2022 GeMIC German Microwave Conference, Ulm, 2022, S. 45–48. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/9783522
[6]
J. Schorlemer, J. Altholz, I. Rolfes, und J. Barowski, „Comparison of short-range SAR imaging algorithms for the detection of landmines using numerical simulations“, in 2021 18th European Radar Conference (EuRAD), Juni 2022, S. 393–396. doi: 10.23919/eurad50154.2022.9784532.
[7]
F. Sheikh u. a., „THz measurements, antennas, and simulations: from the past to the future“, IEEE journal of microwaves, Bd. 3, Nr. 1, S. 289–304, Nov. 2022, doi: 10.1109/jmw.2022.3216210.
[8]
F. Schenkel, I. Barengolts, L. Schmitt, I. Rolfes, M. Hoffmann, und J. Barowski, „Silicon based metamaterials for dielectric waveguides in the THz range“, in 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, Juli 2022, S. 460–463. doi: 10.1109/mms55062.2022.9825523.
[9]
L. Schmitt, J. Barowski, und M. Hoffmann, „THz phase shifter based on MEMS-actuated slot waveguides“, in 2022 Fifth International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Juli 2022, Publiziert. doi: 10.1109/iwmts54901.2022.9832456.
[10]
A. Batra u. a., „Fusion of optical and millimeter wave SAR sensing for object recognition in indoor environment“, in 2022 Fifth International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Juli 2022, Publiziert. doi: 10.1109/iwmts54901.2022.9832438.
[11]
Y. Ivanenko, V. T. Vu, J. Barowski, H. Hellsten, und M. I. Pettersson, „Phase control in interpolation for backprojection of THz FMCW SAR signals“, in 2022 23rd International Radar Symposium (IRS 2022), Danzig, 2022, S. 10–15.
[12]
J. Wagner, C. Dahl, I. Rolfes, und J. Barowski, „Comparative study of automotive MIMO radar measurements in W-Band and D-Band“, in 2022 19th European Radar Conference (EuRAD), Mailand, 2022, S. 257–260. doi: 10.23919/eurad54643.2022.9924831.
[13]
M. Funk, C. Dahl, J. Barowski, I. Rolfes, und C. Schulz, „A broadband test environment concept for FMCW radars based on overmoded waveguides“, in 2022 19th European Radar Conference (EuRAD), Mailand, 2022, S. 245–248. doi: 10.23919/eurad54643.2022.9924735.
[14]
S. Abouzaid, T. Jaeschke, J. Barowski, und N. Pohl, „FMCW radar-based material characterization using convolutional neural network and K-Means clustering“, in 2022 24nd International Microwave and Radar Conference (MIKON 2022), Gdańsk, 2022, Publiziert.
[15]
N. Muckermann, J. Barowski, und N. Pohl, „A large distance focus dielectric Fresnel-based lens antenna for millimeter wave radar“, in 2022 52nd European Microwave Conference (EuMC), Mailand, Nov. 2022, S. 608–611. doi: 10.23919/eumc54642.2022.9924467.
[16]
M. Funk, C. Dahl, J. Barowski, I. Rolfes, und C. Schulz, „A compact overmoded waveguide test environment : investigation of propagation behaviour“, in 2022 Asia-Pacific Microwave Conference proceedings, Yokohama, 2022, S. 470–472. doi: 10.23919/apmc55665.2022.9999960.

2021

[1]
J. Altholz, I. Rolfes, und J. Barowski, „Aperture synthesis method to investigate on the reflection properties of typical road surfaces“, in 2020 50th European Microwave Conference (EuMC 2020), Online, Feb. 2021, S. 634–637. doi: 10.23919/eumc48046.2021.9338033.
[2]
F. Sheikh u. a., „Scattering and roughness analysis of indoor materials at frequencies from 750 GHz to 1.1 THz“, IEEE transactions on antennas and propagation / Institute of Electrical and Electronics Engineers, Bd. 69, Nr. 11, S. 7820–7829, 2021, doi: 10.1109/tap.2021.3076577.
[3]
M. Hassan u. a., „Beam divergence reduction of vortex waves with a tailored lens and a tailored reflector“, IEEE access / Institute of Electrical and Electronics Engineers, Bd. 9, S. 9800–9811, Jan. 2021, doi: 10.1109/access.2021.3050043.
[4]
O. Garten u. a., „Considering non-surface scattering in physical optics approximations“, IEEE transactions on antennas and propagation / Institute of Electrical and Electronics Engineers, Bd. 69, Nr. 8, S. 4798–4807, Feb. 2021, doi: 10.1109/tap.2021.3060043.
[5]
A. Batra u. a., „Short-range SAR imaging from GHz to THz waves“, IEEE journal of microwaves, Bd. 1, Nr. 2, S. 574–585, Apr. 2021, doi: 10.1109/jmw.2021.3063343.
[6]
M. Elsaadouny, J. Barowski, und I. Rolfes, „Unsupervised learning implementation for SAR images clustering“, in 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA 2021), Honolulu, Hawaii, 2021, S. 104. doi: 10.1109/iceaa52647.2021.9539661.
[7]
M. Elsaadouny, J. Barowski, und I. Rolfes, „Transfer learning hardware accelerator for GPR images classification“, gehalten auf der International Conference on Electromagnetics in Advanced Applications, Honolulu, Hawaii, 2021, Publiziert.
[8]
J. Altholz, J. Wagner, N. Pohl, I. Rolfes, und J. Barowski, „Millimeter wave material measurements for building entry loss models above 100 GHz“, in EuCAP 2021, Online, 2021, Publiziert. doi: 10.23919/eucap51087.2021.9411094.
[9]
J. Schorlemer, C. Schulz, N. Pohl, I. Rolfes, und J. Barowski, „Compensation of sensor movements in short-range FMCW synthetic aperture radar algorithms“, IEEE transactions on microwave theory and techniques, Bd. 69, Nr. 11, S. 5145–5159, 2021, doi: 10.1109/tmtt.2021.3108399.
[10]
J. Schorlemer, K. Kolpatzeck, J. C. Balzer, A. Czylwik, I. Rolfes, und J. Barowski, „Efficient frequency domain sampling schemes for THz SAR systems“, in 2021 Fourth international workshop on mobile terahertz systems (IWMTS), Juli 2021, Publiziert. doi: 10.1109/iwmts51331.2021.9486808.
[11]
F. Kamutzki, S. Schneider, J. Barowski, A. Gurlo, und D. A. H. Hanaor, „Silicate dielectric ceramics for millimetre wave applications“, Journal of the European Ceramic Society, Bd. 41, Nr. 7, S. 3879–3894, 2021, doi: 10.1016/j.jeurceramsoc.2021.02.048.
[12]
L. Schmitt, P. Schmitt, J. Barowski, und M. Hoffmann, „Stepwise electrostatic actuator system for THz reflect arrays“, in Actuator 2021, Online, 2021, Bd. 98, S. 233–236. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/9400590
[13]
M. Elsaadouny, J. Barowski, und I. Rolfes, „ConvNet fine-tuning investigation for GPR images classification“, in 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), online, Okt. 2021, Publiziert. doi: 10.23919/ursigass51995.2021.9560298.

2020

[1]
A. Kamaleldin, J. Wagner, I. Rolfes, J. Barowski, und D. Göhringer, „Hard­ware/soft­ware co-de­sign for the si­gnal pro­ces­sing of dielec­tric ma­te­ri­als cha­rac­te­riza­t­i­on“, in 2020 Third In­ter­na­tio­nal Work­shop on Mo­bi­le Tera­hertz Sys­tems (IWMTS 2020), Online, 2020, S. 56–61. doi: 10.1109/iwmts49292.2020.9166402.
[2]
J. Barowski u. a., „Design and evaluation of a passive frequency-coded reflector using W-band FMCW radar“, in 2020 German Microwave Conference (GeMiC), Cottbus, 2020, S. 92–95. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/9080198
[3]
M. El Saadouny, J. Barowski, und I. Rolfes, „ConvNet transfer learning for GPR images classification“, in 2020 German Microwave Conference (GeMiC), Cottbus, 2020, S. 21–24. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/9080246
[4]
O. Garten, J. Barowski, und I. Rolfes, „Simulation and optimization of the design of focusing dielectric lenses based on cartesian ovals with physical optics“, in 2020 International Workshop on Antenna Technology (iWAT 2020), Bukarest, 2020, S. 75–78. doi: 10.1109/iwat48004.2020.1570609732.
[5]
O. Garten, J. Barowski, und I. Rolfes, „Considerations regarding simulator design for electromagnetic measurement systems“, in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM), Singapur, Okt. 2020, S. 17–18. doi: 10.1109/iccem47450.2020.9219331.
[6]
M. Elsaadouny, J. Barowski, und I. Rolfes, „Extracting the features of the shallowly buried objects using LeNet convolutional network“, in 2020 14th European Conference on Antennas and Propagation (EuCAP 2020), Online, 2020, S. 1806–1809. doi: 10.23919/eucap48036.2020.9135701.
[7]
M. Elsaadouny, J. Barowski, und I. Rolfes, „ConvNet fine-tuning investigation for GPR images classification“, gehalten auf der International Union of Radio Science. General Assembly and Scientific Symposium, Rom, 2020, Publiziert.
[8]
U. Miriya Thanthrige, J. Barowski, I. Rolfes, D. Erni, T. Kaiser, und A. Sezgin, „Characterization of dielectric materials by sparse signal processing with iterative dictionary updates“, IEEE sensors letters / Institute of Electrical and Electronics Engineers, Bd. 4, Nr. 9, Art. Nr. 7003404, 2020, doi: 10.1109/lsens.2020.3019924.
[9]
J. Altholz, I. Rolfes, N. Pohl, und J. Barowski, „Millimeterwave radar systems for in-line thickness monitoring in pipe extrusion production lines“, IEEE sensors letters / Institute of Electrical and Electronics Engineers, Bd. 4, Nr. 5, Art. Nr. 6000504, 2020, doi: 10.1109/lsens.2020.2991778.
[10]
M. Elsaadouny, J. Barowski, J. Altholz, und I. Rolfes, „Investigation on the scattering characteristics and unsupervised clustering of 3D printed samples“, International journal of microwave and wireless technologies, Bd. 12, Nr. 9, S. 862–869, 2020, doi: 10.1017/s1759078720000823.
[11]
T. Bonfig, E. Körner, J. Altholz, L. Kroll, I. Rolfes, und J. Barowski, „Estimation of the relative permittivity from the molecular structure of polymers used in automotive industries“, Materials Research Express, Bd. 7, Nr. 12, Art. Nr. 125301, Dez. 2020, doi: 10.1088/2053-1591/abcb3b.
[12]
T. Bonfig, E. Körner, und J. Barowski, „Material challenges in the integration of radar sensors behind painted polymer vehicle components“, in 2020 21st International Radar Symposium (IRS 2020), Warschau, 2020, S. 339–342. doi: 10.23919/irs48640.2020.9253951.
[13]
J. Wagner, I. Rolfes, und J. Barowski, „Synthetic aperture radar surveillance of conveyed materials at 144 GHz“, in Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapur, März 2020, S. 159–161. doi: 10.1109/apmc46564.2019.9038397.

2019

[1]
S. Gerling, J. Altholz, O. Garten, J. Barowski, und I. Rolfes, „Investigation on optical methods for multi scale electromagnetic simulations“, in GeMiC 2019, Stuttgart, 2019, S. 28–31. doi: 10.23919/gemic.2019.8698120.
[2]
J. Wagner, C. Dahl, I. Rolfes, und J. Barowski, „Synthetic aperture radar imaging using MIMO frequency modulated continuous wave sensors“, in 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2019), Bochum, 2019, S. 136–138. doi: 10.1109/imws-amp.2019.8880115.
[3]
S. Gerling, O. Garten, J. Altholz, J. Barowski, und I. Rolfes, „Asymptotic simulation methods as forward models in multilayer material characterization applications“, in 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2019), Bochum, 2019, S. 109–111. doi: 10.1109/imws-amp.2019.8880112.
[4]
M. Elsaadouny, J. Barowski, J. Altholz, und I. Rolfes, „Investigation on scattering characteristics of a 3D-printed sample based on SAR processing“, in 2019 European Microwave Conference in Central Europe (EuMCE 2019), Prag, Okt. 2019, S. 273–276. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/8874825
[5]
J. Altholz, J. Barowski, J. Wagner, und I. Rolfes, „Radar based material characterization at 145 GHz utilizing an ellipsoidal reflector“, in 2019 49th European Microwave Conference (EuMC 2019), Paris, 2019, S. 527–530. doi: 10.23919/eumc.2019.8910803.
[6]
J. Altholz, J. Barowski, und I. Rolfes, „Kalibrierung eines FMCW-Radarsensors für Materialmessungen in veränderlichen Abständen“, gehalten auf der Kleinheubacher Tagung 2019, Miltenberg, 23. September 2019, Publiziert.
[7]
J. Altholz, I. Rolfes, und J. Barowski, „A novel calibration technique for FMCW radar systems enabling material characterization in variable distances“, in 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2019), Bochum, 2019, S. 106–108. doi: 10.1109/imws-amp.2019.8880110.
[8]
O. Garten, J. Altholz, J. Barowski, und I. Rolfes, „Erweiterung der physikalischen Optik für geschichtete Medien“, gehalten auf der Kleinheubacher Tagung, Miltenberg, 23. September 2019, Publiziert.
[9]
M. El Saadouny, J. Barowski, und I. Rolfes, „The subsurface objects classification using a convolutional neural network“, in 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, Dez. 2019, S. 874–877. doi: 10.1109/iemcon.2019.8936250.
[10]
M. Elsaadouny, J. Barowski, und I. Rolfes, „Non-destructive testing of 3D-printed samples based on machine learning“, in 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2019), Bochum, 2019, S. 22–24. doi: 10.1109/imws-amp.2019.8880141.
[11]
M. El Saadouny, J. Barowski, J. Altholz, und I. Rolfes, „Millimeter wave SAR imaging for the non-destructive testing of 3D-printed samples“, in 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Okt. 2019, S. 1283–1285. doi: 10.1109/iceaa.2019.8879272.
[12]
M. El Saadouny, J. Barowski, und I. Rolfes, „Humanitarian microwave imaging enhancement and classification of shallowly buried objects“, in 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, Okt. 2019, S. 394–397. doi: 10.1109/iemcon.2019.8936165.
[13]
M. El Saadouny, J. Barowski, und I. Rolfes, „A SAR image enhancement algorithm using the discrete wavelet transform“, in 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, Okt. 2019, S. 382–385. doi: 10.1109/iemcon.2019.8936169.
[14]
M. El Saadouny, J. Barowski, und I. Rolfes, „A convolutional neural network for the non-destructive testing of 3D-printed samples“, in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, Okt. 2019, Publiziert. doi: 10.1109/irmmw-thz.2019.8874445.
[15]
J. Barowski, J. Altholz, I. Alawneh, F. Sheikh, T. Kaiser, und I. Rolfes, „A compact measurement setup for in-situ material characterization in the lower THz range“, in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), Bad Neuenahr, Sep. 2019, Publiziert. doi: 10.1109/iwmts.2019.8823700.
[16]
J. Barowski, J. Altholz, J. Wagner, N. Pohl, und I. Rolfes, „Spatial identification of dielectric properties using synthetic aperture radar“, in 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2019), Bochum, 2019, S. 139–141. doi: 10.1109/imws-amp.2019.8880121.
[17]
I. Alawneh, J. Barowski, und I. Rolfes, „Measuring the permittivity of dielectric materials by using 140 GHz FMCW radar sensor“, in 2019 13th European Conference on Antennas and Propagation (EuCAP 2019), Krakau, 2019, Publiziert. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/8740048
[18]
L. Pio­trow­sky, V. Bernhardt, J. Barowski, I. Rolfes, und N. Pohl, „Antenna pattern characterization with an industrial robot assisted FMCW radar system“, in Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapur, 2019, S. 153–155. doi: 10.1109/apmc46564.2019.9038798.
[19]
A. Thewes, C. Weigel, J. Barowski, und M. Hoffmann, „Optimierung eines Biegeplattenwellensensors für hohe Eindringtiefe und Sensitivität“, in MikroSystemTechnik Kongress 2019, Berlin, 2019, S. 448–451.

2018

[1]
C. Baer u. a., „Humanitarian microwave detection of improvised explosive devices in Colombia“, in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA 2018), Cartagena de Indias, 2018, S. 372–375. doi: 10.1109/iceaa.2018.8520508.
[2]
J. Wagner, J. Barowski, T. Kalb, I. Rolfes, und D. Göhringer, „Hardware-accelerated embedded SAR processor for realtime FMCW radar applications“, in 2018 11th German Microwave Conference (GeMiC 2018), Freiburg im Breisgau, 2018, S. 263–266. doi: 10.23919/gemic.2018.8335080.
[3]
I. Alawneh, J. Barowski, und I. Rolfes, „Extraction of relative permittivity from measured reflection coefficient of dielectric materials in the frequency range 207 – 247 GHz“, in 2018 48th European Microwave Conference (EuMC 2018), Madrid, 2018, S. 576–579. doi: 10.23919/eumc.2018.8541509.
[4]
J. Barowski, M. Zimmermanns, und I. Rolfes, „Millimeter-wave characterization of dielectric materials using calibrated FMCW transceivers“, IEEE transactions on microwave theory and techniques, Bd. 66, Nr. 8, S. 3683–3689, 2018, doi: 10.1109/tmtt.2018.2854180.
[5]
J. Altholz, J. Barowski, und I. Rolfes, „Characterization of layered dielectric materials using ultra-wideband FMCW-radar measurements“, in 2018 Asia-Pacific Microwave Conference (APMC 2018), Kyoto, 2018, S. 1327–1329. doi: 10.23919/apmc.2018.8617322.
[6]
J. Wagner, J. Barowski, C. Dahl, und I. Rolfes, „Comparison between rectangular and hexagonal synthetic apertures for radar imaging“, in 2018 15th European Radar Conference (EuRAD 2018), Madrid, 2018, S. 150–153. doi: 10.23919/eurad.2018.8546654.
[7]
M. Elsaadouny, J. Barowski, und I. Rolfes, „Millimeter wave short range SAR imaging using cross-polarized radar system“, in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON 2018), Vancouver, BC, 2018, S. 475–478. doi: 10.1109/iemcon.2018.8615032.
[8]
J. Wagner, J. Barowski, und I. Rolfes, „A 3D printed elliptical mirror for material characterization using FMCW transceivers“, in 2018 Asia-Pacific Microwave Conference (APMC 2018), Kyoto, 2018, S. 911–913. doi: 10.23919/apmc.2018.8617212.
[9]
I. Alawneh, J. Barowski, und I. Rolfes, „Dielectric material characterization in the frequency range 68 - 92 GHz“, in 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018, Publiziert. doi: 10.1049/cp.2018.1028.
[10]
J. Altholz, J. Barowski, und I. Rolfes, „Charakterisierung dünner dielektrischer Schichten mittels FMCW-Radar im Zeitbereich“, gehalten auf der Kleinheubacher Tagung 2018, Miltenberg, 24. September 2018, Publiziert.
[11]
M. El Saadouny, J. Barowski, und I. Rolfes, „Millimeter wave short range SAR imaging based on matched filtering“, gehalten auf der Kleinheubacher Tagung 2018, Miltenberg, September 2018, Publiziert.
[12]
J. Barowski und I. Rolfes, „Spatially resolved material characterization using millimeter wave radar imaging“, gehalten auf der Kleinheubacher Tagung 2018, Miltenberg, 24. September 2018, Publiziert.
[13]
I. Alawneh, J. Barowski, und I. Rolfes, „Relative permittivity from measured reflection coefficient of dielectric materials in the frequency range 207 - 247 GHz“, gehalten auf der European Microwave Conference (EuMC), Madrid, September 2018, Publiziert.

2017

[1]
C. Baer, S. Gutierrez, J. Altholz, J. Barowski, F. Vega, und I. Rolfes, „Ground penetrating synthetic aperture radar imaging providing soil permittivity estimation“, in 2017 IEEE MTT-S International Microwave Symposium (IMS 2017), Honolulu, Hawaii, 2017, S. 1367–1370. doi: 10.1109/mwsym.2017.8058868.
[2]
J. Wagner, J. Barowski, T. Kalb, D. Göhringer, und I. Rolfes, „Hardware-beschleunigte eingebettete SAR-Prozessoren für Echtzeit FMCW-Radar Anwendungen“, in Tagungsprogramm, Zusammenfassung der Beiträge, Kleinheubacher Tagung 2017, 2017, S. 18–19. [Online]. Verfügbar unter: https://www.kh2017.de/KH2017_book_of_abstracts.pdf
[3]
D. Pohle, J. Barowski, J. Altholz, und I. Rolfes, „Surface reconstruction using thinned random arrays in mm-wave FMCW SAR imaging“, in 2017 14th European Radar Conference (EURAD 2017), Nürnberg, 2017, S. 303–306. doi: 10.23919/eurad.2017.8249207.
[4]
J. Altholz, J. Barowski, D. Pohle, C. Baer, und I. Rolfes, „A simulation concept based on the FDFD method for ground penetrating radar used in humanitarian demining“, in 2017 14th European Radar Conference (EURAD 2017), Nürnberg, 2017, S. 37–40. doi: 10.23919/eurad.2017.8249141.
[5]
J. Barowski, I. Rolfes, N. Pohl, und M. Hübner, „Radarbasierte Messverfahren für die präzise ortsaufgelöste Materialcharakterisierung“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2017.
[6]
B. Hattenhorst, M. Mallach, C. Baer, T. Musch, J. Barowski, und I. Rolfes, „Dielectric phantom materials for broadband biomedical applications“, in 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC 2017), Göteborg, 2017, Publiziert. doi: 10.1109/imbioc.2017.7965802.
[7]
J. Barowski und I. Rolfes, „Ellipsometry based on millimeter wave radar measurements“, in 47th European Microwave Conference (EuMC 2017), Nürnberg, 2017, S. 934–937. doi: 10.23919/eumc.2017.8230999.
[8]
C. Baer, J. Barowski, und I. Rolfes, „On the usability of low-cost inertial navigation systems for free-hand SAR imaging at GPR-frequencies“, in 2017 IEEE Sensors Applications Symposium (SAS 2017), Glassboro, NJ, 2017, Publiziert. doi: 10.1109/sas.2017.7894094.
[9]
J. Barowski, I. Rolfes, und C. Baer, „Real-time imaging system for millimeter wave synthetic aperture radar sensors“, in 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC 2017), Göteborg, 2017, Publiziert. doi: 10.1109/imbioc.2017.7965769.
[10]
J. Barowski und I. Rolfes, „Millimeter wave material characterization using FMCW-transceivers“, in 2017 IEEE MTT-S International Microwave Workshop Sereis on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2017), Pavia, 2017, S. 295–297. doi: 10.1109/imws-amp.2017.8247432.
[11]
J. Barowski und I. Rolfes, „Characterizing dielectric materials using monostatic transmission- and reflection-ellipsometry“, Frequenz, Bd. 71, Nr. 3–4, S. 185–193, 2017, doi: 10.1515/freq-2016-0204.
[12]
J. Altholz, J. Barowski, C. Baer, und I. Rolfes, „Implementierung eines schnellen numerischen GPR-Simulators zur stochastischen Analyse von improvisierten Sprengsätzen in Kolumbien“, in Tagungsprogramm, Zusammenfassung der Beiträge, Kleinheubacher Tagung 2017, 2017, S. 40–41. [Online]. Verfügbar unter: https://www.kh2017.de/KH2017_book_of_abstracts.pdf
[13]
J. Altholz, J. Barowski, C. Baer, und I. Rolfes, „An FDFD-based simulation concept for stochastic investigations on improvised explosive devices in Colombia“, in Mine Detection Symposium 2017, 2017, Publiziert.

2016

[1]
D. Damyanov u. a., „Active contour extraction method for objects with a rough surface using single-chip FMCW radars“, in 2016 IEEE Radar Conference (RadarConf 2016), Philadelphia, PA, 2016, S. 854–857. doi: 10.1109/radar.2016.7485228.
[2]
J. Barowski, T. Schultze, I. Willms, und I. Rolfes, „Monostatic and thickness-independent material characterisation based on microwave ellipsometry“, in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, S. 449–452. doi: 10.1109/gemic.2016.7461652.

2015

[1]
B. Meiners, J. Barowski, A. Nalobin, und I. Rolfes, „Analyse und Nachbildung der Ankunftszeit von Mehrwegekomponenten in Kanalimpulsantworten bei bewegten Sendern oder Empfänger“, Book of Abstracts. URSI, Miltenberg, S. 14, 28. September 2015.
[2]
J. Barowski, D. Pohle, T. Jaeschke, N. Pohl, und I. Rolfes, „Ein selbst-referentielles Messsystem für die Bildgebung auf Basis des synthetischen Apertur Radars“, Book of Abstracts. URSI, Miltenberg, S. 34, 28. September 2015.
[3]
D. Pohle, J. Barowski, T. Jaeschke, N. Pohl, und I. Rolfes, „Charakterisierung der Topografie gaußscher Oberflächen mithilfe bildgebender Radarverfahren“, Book of Abstracts. URSI, Miltenberg, S. 32–33, 28. September 2015.
[4]
J. Altholz, J. Barowski, und I. Rolfes, „Entwicklung einer elektronisch schwenkbaren Antenne auf Basis einer planar gespeisten sphärischen Linse für Radarmessungen“, Book of Abstracts. URSI, Miltenberg, S. 31–32, 28. September 2015.
[5]
A. Nalobin, S. Dortmund, S. Sczyslo, J. Barowski, B. Meiners, und I. Rolfes, „Development and analysis of a modified Saleh-Valenzuela channel model for the UHF band“, in 2015 German Microwave Conference (GeMiC 2015), Nürnberg, 2015, S. 44–47. doi: 10.1109/gemic.2015.7107748.
[6]
J. Barowski, D. Pohle, T. Jaeschke, N. Pohl, und I. Rolfes, „Characterizing surface profiles utilizing mm-wave FMCW SAR imaging“, in 2015 European Microwave Conference (EuMC 2015), Paris, 2015, S. 446–449. doi: 10.1109/eumc.2015.7345796.
[7]
B. Meiners, J. Barowski, A. Nalobin, und I. Rolfes, „Investigation on the geometric properties of multipath components in indoor radio channels“, in 2015 9th European Conference on Antennas and Propagation (EuCAP), Lissabon, 2015, Publiziert. [Online]. Verfügbar unter: http://ieeexplore.ieee.org/document/7228473/

2014

[1]
J. Barowski, B. Meiners, A. Nalobin, und I. Rolfes, „Measurements of radio channel characteristics for propagation models used by cognitive radio systems“, gehalten auf der Kleinheubacher Tagung, Miltenberg, 30. September 2014, Publiziert.
[2]
A. Nalobin, J. Barowski, B. Meiners, und I. Rolfes, „Untersuchung eines Verfahrens für die Winkelschätzung zur Reduzierung der Antennengröße für Nahfeldszenarien“, gehalten auf der Kleinheubacher Tagung, Miltenberg, 29. September 2014, Publiziert.
[3]
B. Meiners, S. Dortmund, S. Sczyslo, J. Barowski, A. Nalobin, und I. Rolfes, „Kalibrierung und Verifikation eines Ray-Tracing Modells zur Simulation von Funkkanälen für die drahtlose Audioübertragung“, gehalten auf der Kleinheubacher Tagung, Miltenberg, 29. September 2014, Publiziert.
[4]
A. Nalobin, J. Barowski, B. Meiners, S. Dortmund, S. Sczyslo, und I. Rolfes, „Empirical investigations on the second moment characterization of the frequency selectivity of indoor fading channels“, in GeMiC 2014, Aachen, 2014, Bd. 246. [Online]. Verfügbar unter: http://ieeexplore.ieee.org/document/6775148/
[5]
J. Barowski, B. Meiners, A. Nalobin, S. Dortmund, S. Sczyslo, und I. Rolfes, „A system simulator including channel and frontend models for cognitive professional wireless microphones“, in 2014 1st International Workshop on Cognitive Cellular Systems (CCS 2014), Duisburg, 2014, S. 11–15. doi: 10.1109/ccs.2014.6933786.
[6]
J. Barowski, B. Meiners, A. Nalobin, S. Dortmund, S. Sczyslo, und I. Rolfes, „Indoor localization of wireless audio transmissions using a distributed sensing grid“, in GeMiC 2014, Aachen, 2014, Bd. 246. [Online]. Verfügbar unter: http://ieeexplore.ieee.org/document/6775133/
[7]
B. Meiners, J. Barowski, A. Nalobin, und I. Rolfes, „Comparison of the channel impulse response interpolation algorithm and channel measurements“, in GeMiC 2014, Aachen, 2014, Bd. 246. [Online]. Verfügbar unter: http://ieeexplore.ieee.org/document/6775142/

2013

[1]
B. Meiners, S. Dortmund, S. Sczyslo, J. Barowski, A. Nalobin, und I. Rolfes, „Algorithmus zur Interpolation von Kanalimpulsantworten mit Hilfe stochastischer Prozesse“, Tagungsprogramm, Kleinheubacher Tagung 2013. S. 15, 2013. [OnlineRessource]. Verfügbar unter: http://www.kh2013.de/kleinheubacher_tagung_2013_abstracts.pdf
[2]
J. Barowski, S. Dortmund, B. Meiners, A. Nalobin, S. Sczyslo, und I. Rolfes, „Analyse eines verteilten spectrum-sensing Systems für kognitive Funksysteme“, Tagungsprogramm, Kleinheubacher Tagung 2013. S. 14, 2013. [Online]. Verfügbar unter: http://www.kh2013.de/kleinheubacher_tagung_2013_abstracts.pdf
[3]
A. Nalobin, S. Dortmund, J. Barowski, B. Meiners, S. Sczyslo, und I. Rolfes, „Differenzierung von Large- und Small-Scale-Gebieten von Indoor-Fadingkanälen mittels Fourier-Analyse“, Tagungsprogramm, Kleinheubacher Tagung 2013. S. 15, September 2013. [OnlineRessource]. Verfügbar unter: http://www.kh2013.de/kleinheubacher_tagung_2013_abstracts.pdf
[4]
J. Barowski, S. Dortmund, B. Meiners, A. Nalobin, S. Sczyslo, und I. Rolfes, „Evaluation of radio channel LOS/NLOS transitions in indoor and outdoor fading measurements“, in 2013 European Microwave Conference (EuMC 2013), Nürnberg, 2013, S. 1079–1082. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/6686848
[5]
J. Barowski, S. Dortmund, S. Sczyslo, und I. Rolfes, „Nonlinear modeling of PMSE receiver frontends using Volterra series“, in 2013 7th European Conference on Antennas and Propagation (EuCAP 2013), 2013, S. 3115–3120. [Online]. Verfügbar unter: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6546977&tag=1

2012

[1]
J. Barowski, S. Sczyslo, S. Dortmund, und I. Rolfes, „Modellierung des Interferenzverhaltens von frequenzagilen PMSE Geräten mit bestehenden Funkstandards im UHF Bereich“, gehalten auf der Kleinheubacher Tagung, Miltenberg, 24. September 2012, Publiziert.

Ohne Angabe

[1]
M. El Saadouny, J. Barowski, und I. Rolfes, „FPGA based accelerator for buried objects identification“, in 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), Milan, S. 559–562. doi: 10.1109/tsp49548.2020.9163583.

Postanschrift

Ruhr-Uni­ver­si­tät Bo­chum
Fa­kul­tät für Elek­tro­tech­nik und In­for­ma­ti­ons­tech­nik
Lehrstuhl für Hochfrequenzsysteme
Postfach ID 28
Uni­ver­si­täts­stra­ße 150
D-44801 Bo­chum

Kontaktdaten

Sekretariat
Raum: ID 04/337
Telefon: (+49) (0) 234 32 - 29319
Fax: (+49) (0) 234 32 - 14167   
E-Mail: silke.sauer[at]rub.de      
Lageplan &  Anreise RUB                                                   

Lehrstuhlinhaber

Prof. Dr.-Ing. Ilona Rolfes 
Raum: ID 04/335 
Te­le­fon: (+49) (0) 234 32 - 27383
Fax: (+49) (0) 234 32 - 14167
E-Mail: ilona.rolfes[at]rub.de

To Top