Prof. Dr.-Ing. Georg Schmitz

Professor

Medizintechnik

Adresse:
Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Medizintechnik
Universitätsstraße 150
D-44801 Bochum

Raum:
ID 04/233

Telefon:
(+49)(0)234 / 32 - 27573

Fax:
(+49)(0)234 / 32 - 14872

E-Mail:
georg.schmitz(at)rub.de

Lebenslauf

Georg Schmitz was born in Mül­heim a.d. Ruhr, Ger­ma­ny, in 1965. He re­cei­ved the Dipl.-Ing. de­gree in 1990 and the Dr.-Ing. de­gree in 1995 in elec­tri­cal en­gi­nee­ring from Ruhr-Uni­ver­si­tät Bo­chum, Ger­ma­ny.

From 1995 to 2001 he was with Phi­lips Re­se­arch La­bo­ra­to­ries of Royal Phi­lips Elec­tro­nics, in Ham­burg and Aa­chen as a Prin­ci­pal Sci­en­tist. From 2001 to 2004 he was ap­poin­ted Pro­fes­sor for Me­di­cal En­gi­nee­ring at the Uni­ver­si­ty of Ap­p­lied Sci­ence Ko­blenz. Since 2004 he has been Pro­fes­sor for elec­tri­cal en­gi­nee­ring and holds the chair for me­di­cal en­gi­nee­ring at Ruhr-Uni­ver­si­ty Bo­chum, Ger­ma­ny. From 2009 to 2012 he was Dean of the Fa­cul­ty for Elec­tri­cal En­gi­nee­ring and In­for­ma­ti­on Tech­no­lo­gy, and is Mem­ber of the Se­na­te of Ruhr-Uni­ver­si­tät Bo­chum since 2014.

His re­se­arch in­te­rests are main­ly in the field of ul­tra­so­nic ima­ging with cur­rent re­se­arch pro­jects on ul­tra­sound con­trast media de­tec­tion and cha­rac­te­riza­t­i­on, novel be­am­for­ming and non­line­ar re­con­struc­tion me­thods, and pho­toa­coustic ima­ging.

Prof. Schmitz is se­ni­or mem­ber of the IEEE, mem­ber of the Acousti­cal So­cie­ty of Ame­ri­ca (ASA), the Ger­man As­so­cia­ti­on of Elec­tri­cal En­gi­neers (VDE), and of the World, Eu­ropean and Ger­man So­cie­ties of Ul­tra­sound in Me­di­ci­ne and Bio­lo­gy (WFUMB, EF­SUMB, DEGUM). He ser­ves as as­so­cia­te edi­tor for the IEEE Tran­sac­tions of Ul­tra­so­nics, Fer­ro­elec­trics, and Fre­quen­cy Con­trol and is mem­ber of the Edi­to­ri­al Ad­vi­so­ry Board of Ul­tra­sound in Me­di­ci­ne and Bio­lo­gy. From 2013-2015 he ser­ved as vice chair (me­di­cal ul­tra­sound) of the tech­ni­cal pro­gram com­mit­tee of the IEEE In­ter­na­tio­nal Ul­tra­so­nics Sym­po­si­um, and is tech­ni­cal pro­gram chair of the 2017 IEEE In­ter­na­tio­nal Ul­tra­so­nics Sym­po­si­um in Wa­shing­ton, D.C.

2025

[1]
S. Dencks u. a., „Super-Resolution Ultrasound: from Data Acquisition and Motion Correction to Localization, Tracking, and Evaluation“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 2025, Feb. 2025, doi: 10.1109/tuffc.2025.3543322.

2024

[1]
M. Lerendegui u. a., „ULTRA-SR Challenge: Assessment of Ultrasound Localization and TRacking Algorithms for Super-Resolution Imaging“, IEEE transactions on medical imaging / Institute of Electrical and Electronics Engineers, Bd. 43, Nr. 8, S. 2970–2987, Apr. 2024, doi: 10.1109/tmi.2024.3388048.
[2]
C. Porte u. a., „Monitoring of neoadjuvant chemotherapy response of breast cancer with ultrasound localization microscopy“, The journal of the Acoustical Society of America, Bd. 155, Nr. 3 S, Art. Nr. A24, Juli 2024, doi: 10.1121/10.0026657.
[3]
M. Moosavifar u. a., „Polymeric microbubble shell engineering : microporosity as a key factor to enhance ultrasound imaging and drug delivery performance“, Advanced science, Bd. 2024, Art. Nr. 2404385, Aug. 2024, doi: 10.1002/advs.202404385.
[4]
P. Hagemeyer, T. Lisson, S. Dencks, und G. Schmitz, „Fourier Diffraction Theorem for 3d Ultrasound Imaging with a Row-Column Array“, in 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athen, Aug. 2024, Publiziert. doi: 10.1109/isbi56570.2024.10635345.
[5]
S. Dencks, T. Lisson, N. Oblisz, F. Kiessling, und G. Schmitz, „Ultrasound Localization Microscopy Precision of Clinical 3D Ultrasound Systems“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 2024, Sep. 2024, doi: 10.1109/tuffc.2024.3467391.
[6]
J. Sobolewski, S. Dencks, und G. Schmitz, „Influence of Image Discretization and Patch Size on Microbubble Localization Precision“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 2024, Art. Nr. 10716480, Okt. 2024, doi: 10.1109/tuffc.2024.3479710.
[7]
C. Porte u. a., „Ultrasound Localization Microscopy for Cancer Imaging“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 2024, Art. Nr. 10770255, Nov. 2024, doi: 10.1109/tuffc.2024.3508266.
[8]
T. Lisson, M. Fouad, J. Baier, A. Rix, F. Kiessling, und G. Schmitz, „A Comparative Study of Contrast Enhanced Ultrasound Imaging Using Deep Learning vs. Amplitude Modulation: an in-Vivo Investigation“, in 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Dez. 2024, Publiziert. doi: 10.1109/uffc-js60046.2024.10793461.
[9]
P. Hagemeyer, T. Lisson, S. Dencks, und G. Schmitz, „Fast Image Reconstruction in the Frequency Domain for Row-Column-Arrays“, in 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Dez. 2024, Publiziert. doi: 10.1109/uffc-js60046.2024.10793548.
[10]
V. Rohovets, G. Schmitz, und M. N. Cherkashin, „Guiding light through absorbing structures using a linear transducer at diagnostic intensities“, in 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Dez. 2024, Publiziert. doi: 10.1109/uffc-js60046.2024.10793718.
[11]
Y. Metwally, M. Fouad, G. Schmitz, und S. Dencks, „Enhancement of Needle Localization Using Semi-Supervised Deep Learning“, in 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Dez. 2024, Publiziert. doi: 10.1109/uffc-js60046.2024.10793623.

2023

[1]
M. Fouad, M. A. A. E. Ghany, und G. Schmitz, „A single-shot harmonic imaging approach utilizing deep learning for medical ultrasound“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 70, Nr. 3, S. 237–252, Jan. 2023, doi: 10.1109/tuffc.2023.3234230.
[2]
S. Dencks und G. Schmitz, „Ultrasound localization microscopy“, Zeitschrift für medizinische Physik, Bd. 2023, Juni 2023, doi: 10.1016/j.zemedi.2023.02.004.
[3]
M. N. Cherkashin, V. Rohovets, C. Brenner, G. Schmitz, und M. R. Hofmann, „Reconfigurable transient ultrasound light waveguiding with a linear ultrasonic array“, in Optical manipulation and its applications, Vancouver, British Columbia Canada, Juni 2023, Publiziert. doi: 10.1364/boda.2023.jtu4b.22.
[4]
C. Porte u. a., „Ultrasound localization microscopy for breast cancer imaging in patients: protocol optimization and comparison with shear wave elastography“, Ultrasound in medicine and biology, Bd. 50, Nr. 1, S. 57–66, Okt. 2023, doi: 10.1016/j.ultrasmedbio.2023.09.001.
[5]
M. Heller und G. Schmitz, „Speed-of-sound reconstruction with deep neural networks in pulse-echo mode: coherency- vs RF-data-based approach“, in Symposium proceedings, IEEE IUS 2023, Montréal, Québec, Nov. 2023, Publiziert. doi: 10.1109/ius51837.2023.10307895.
[6]
T. Lisson, J. Salewski, S. Dencks, und G. Schmitz, „Resolution improvement of ULM images applying a Rauch-Tung-Striebel smoother“, in Symposium proceedings, IEEE IUS 2023, Montréal, Québec, Nov. 2023, Publiziert. doi: 10.1109/ius51837.2023.10306605.
[7]
M. Fouad, T. Lisson, und G. Schmitz, „DeepCEUS: interleaved signals estimation in checkerboard imaging for contrast media imaging using context-aware deep learning“, in Symposium proceedings, IEEE IUS 2023, Montréal, Québec, Nov. 2023, Publiziert. doi: 10.1109/ius51837.2023.10308214.
[8]
M. Fouad, M. Schwegler, G. Schmitz, und S. Dencks, „Exploiting resonance effects for cannula localization using multiview spectral channel data as input for a deep neural network (DNN)“, in Symposium proceedings, IEEE IUS 2023, Montréal, Québec, Nov. 2023, Publiziert. doi: 10.1109/ius51837.2023.10307125.
[9]
M. Heller und G. Schmitz, „Aberration correction of ultrasound b-mode images using deep learning-based speed-of-sound reconstructions“, in Symposium proceedings, IEEE IUS 2023, Montréal, Québec, Nov. 2023, Publiziert. doi: 10.1109/ius51837.2023.10307491.
[10]
V. Rohovets, G. Schmitz, und M. Cherkashin, „Guiding light with ultrasound using a linear array transducer at diagnostic intensities“, in Symposium proceedings, IEEE IUS 2023, Montréal, Québec, Nov. 2023, Publiziert. doi: 10.1109/ius51837.2023.10307742.
[11]
J. Sobolewski, S. Dencks, und G. Schmitz, „Influence of image discretization and patch size on ULM localization precision“, in Symposium proceedings, IEEE IUS 2023, Montréal, Québec, Nov. 2023, Publiziert. doi: 10.1109/ius51837.2023.10306429.
[12]
M. Fouad und G. Schmitz, „Deep learning based single-shot focused tissue harmonic imaging: an in-vivo study“, in Symposium proceedings, IEEE IUS 2023, Montréal, Québec, Nov. 2023, Publiziert. doi: 10.1109/ius51837.2023.10306903.
[13]
M. Fouad und G. Schmitz, „Synthetic ultrasound signal-pairs generation using Gans“, in 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, Sep. 2023, Publiziert. doi: 10.1109/isbi53787.2023.10230481.
[14]
M. F. Schiffner und G. Schmitz, „Frequency-dependent F-number suppresses grating lobes and improves the lateral resolution in coherent plane-wave compounding“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 70, Nr. 9, S. 1101–1117, Juli 2023, doi: 10.1109/tuffc.2023.3291612.

2022

[1]
M. Fouad, S. Dencks, und G. Schmitz, „Cannula localization using separate plane wave ultrasound measurements and a deep neural network“, in IUS 2022 symposium proceedings, Veneding, Dez. 2022, Publiziert. doi: 10.1109/ius54386.2022.9957365.
[2]
S. Dencks, N. Oblisz, T. Lisson, und G. Schmitz, „Achievable localization precision of clinical 3D ultrasound localization microscopy (ULM)“, in IUS 2022 symposium proceedings, Veneding, Dez. 2022, Publiziert. doi: 10.1109/ius54386.2022.9957160.
[3]
M. Fouad und G. Schmitz, „Inverted pulse estimation in pulse inversion harmonic imaging using deep learning“, in IUS 2022 symposium proceedings, Veneding, Dez. 2022, Publiziert. doi: 10.1109/ius54386.2022.9958113.

2021

[1]
M. M. F. Abdelaty, G. Schmitz, M. Huebner, und M. A. A. E. Ghany, „Deep learning in signal linearization for harmonic imaging application“, in 2021 IEEE 18th International symposium on biomedical imaging (ISBI), Nizza, Mai 2021, S. 957–960. doi: 10.1109/isbi48211.2021.9434134.
[2]
M. Piepenbrock, S. Dencks, und G. Schmitz, „Tissue motion estimation of contrast enhanced ultrasound images with a stable principal component pursuit“, in 2021 IEEE 18th International symposium on biomedical imaging (ISBI), Nizza, Mai 2021, S. 1642–1645. doi: 10.1109/isbi48211.2021.9434155.
[3]
T. C. Kranemann und G. Schmitz, „Identification of static nonlinearities by sinusoidal excitation with variable DC offsets“, Review of scientific instruments, Bd. 92, Nr. 3, Art. Nr. 035103, März 2021, doi: 10.1063/5.0036696.
[4]
S. Dencks, M. Piepenbrock, und G. Schmitz, „Velocity filtering with a median filter better preserves small vessels for ultrasound localization microscopy“, in 2021 IEEE International Ultrasonics Symposium, online, Nov. 2021, Publiziert. doi: 10.1109/ius52206.2021.9593882.
[5]
M. Piepenbrock, D. Koretskaia, G. Schmitz, und S. Dencks, „3D microbubble localization with a convolutional neural network for super-resolution ultrasound imaging“, in 2021 IEEE International Ultrasonics Symposium, online, Nov. 2021, Publiziert. doi: 10.1109/ius52206.2021.9593473.
[6]
A. Rix u. a., „Effects of contrast-enhanced ultrasound treatment on neoadjuvant chemotherapy in breast cancer“, Theranostics, Bd. 11, Nr. 19, S. 9557–9570, Okt. 2021, doi: 10.7150/thno.64767.
[7]
M. Heller und G. Schmitz, „Deep learning-based speed-of-sound reconstruction for single-sided pulse-echo ultrasound using a  coherency measure as input feature“, in 2021 IEEE International Ultrasonics Symposium, online, Nov. 2021, Publiziert. doi: 10.1109/ius52206.2021.9593406.
[8]
M. M. F. Abdelaty, M. A. A. El Ghany, M. Huebner, und G. Schmitz, „A deep learning signal-based approach to fast harmonic imaging“, in 2021 IEEE International Ultrasonics Symposium, online, Nov. 2021, Publiziert. doi: 10.1109/ius52206.2021.9593348.

2020

[1]
M. N. Cherkashin, C. Brenner, G. Schmitz, und M. R. Hofmann, „Transversally travelling ultrasound for light guiding deep into scattering media“, Communications Physics, Bd. 3, Nr. 180, Okt. 2020, doi: 10.1038/s42005-020-00443-w.
[2]
K. Christensen-Jeffries u. a., „Super-resolution ultrasound imaging“, Ultrasound in medicine and biology, Bd. 46, Nr. 4, S. 865–891, Jan. 2020, doi: 10.1016/j.ultrasmedbio.2019.11.013.
[3]
S. Dencks, M. Piepenbrock, und G. Schmitz, „Assessing vessel reconstruction in ultrasound localization microscopy by maximum likelihood estimation of a zero-inflated poisson model“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 67, Nr. 8, S. 1603–1612, März 2020, doi: 10.1109/tuffc.2020.2980063.
[4]
M. M. F. Abdelaty, Y. Metwally, G. Schmitz, M. Hüebner, und M. A. Abd El Ghany, „Deep learning utilization in beamforming enhancement for medical ultrasound“, in The 44th IEEE conference on computers, software, and applications (COMPSAC 2020), Madrid, Sep. 2020, S. 717–722. doi: 10.1109/compsac48688.2020.0-175.
[5]
M. Heller und G. Schmitz, „Reducing grating lobe artifacts by exploiting lateral transducer motion“, in 2020 IEEE International ultrasonics symposium (IUS), Las Vegas, Nov. 2020, Publiziert. doi: 10.1109/ius46767.2020.9251495.
[6]
T. C. Kranemann, M. Evertsson, und G. Schmitz, „The magnetic force generation in magnetomotive ultrasound imaging“, in 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, Nov. 2020, Publiziert. doi: 10.1109/ius46767.2020.9251682.
[7]
M. Piepenbrock, S. Dencks, und G. Schmitz, „Microbubble tracking with a nonlinear motion model“, in 2020 IEEE International ultrasonics symposium (IUS), Las Vegas, Nov. 2020, Publiziert. doi: 10.1109/ius46767.2020.9251581.
[8]
G. Schmitz und S. Dencks, „Ultrasound imaging“, in Molecular imaging in oncology, 2. edition., Bd. 216, O. Schober, J. Debus, und F. Kießling, Hrsg. Cham: Springer International Publishing, 2020, S. 135–154. doi: 10.1007/978-3-030-42618-7_4.
[9]
D. Wilmes, M. Piepenbrock, G. Schmitz, und S. Dencks, „Tracking of microbubbles with a recurrent neural network for super-resolution imaging“, in 2020 IEEE International ultrasonics symposium (IUS), Las Vegas, Nov. 2020, Publiziert. doi: 10.1109/ius46767.2020.9251643.
[10]
M. N. Cherkashin, C. Brenner, G. Schmitz, und M. R. Hofmann, „Transient light waveguides deep into scattering media by transversal ultrasound“, in Clinical and Translational Biophotonics, Washington, DC, 2020, Publiziert. doi: 10.1364/translational.2020.jth2a.15.

2019

[1]
S. Dencks u. a., „Clinical pilot application of super-resolution US imaging in breast cancer“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 66, Nr. 3, S. 517–526, 2019, doi: 10.1109/tuffc.2018.2872067.
[2]
T. Ersepke, T. C. Kranemann, und G. Schmitz, „On the performance of time domain displacement estimators for magnetomotive ultrasound imaging“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 66, Nr. 5, S. 911–921, 2019, doi: 10.1109/tuffc.2019.2903885.
[3]
T. C. Kranemann, T. Ersepke, S. Draack, und G. Schmitz, „Modeling and measurement of the nonlinear force on nanoparticles in magnetomotive techniques“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 67, Nr. 4, S. 679–690, Nov. 2019, doi: 10.1109/tuffc.2019.2951783.
[4]
T. Ersepke, T. C. Kranemann, und G. Schmitz, „Quantification of noise in shear wave elasticity imaging caused by speckle“, in 2019 IEEE International Ultrasonics Symposium (IUS 2019), Online, 2019, S. 1399–1402. doi: 10.1109/ultsym.2019.8925648.
[5]
T. C. Kranemann, T. Ersepke, und G. Schmitz, „Improving harmonic motion estimation with phase-based estimators for magnetomotive ultrasound imaging“, in 2019 IEEE International Ultrasonics Symposium (IUS 2019), Online, 2019, S. 2162–2165. doi: 10.1109/ultsym.2019.8925976.
[6]
M. Piepenbrock, S. Dencks, und G. Schmitz, „Reliable motion estimation in super-resolution US by reducing the interference of microbubble movement“, in 2019 IEEE International Ultrasonics Symposium (IUS 2019), Online, 2019, S. 384–387. doi: 10.1109/ultsym.2019.8925566.
[7]
T. Ersepke, T. C. Kranemann, und G. Schmitz, „2-D Bayesian displacement estimation improves contrast-to-noise/Resolution trade-off in shear wave elasticity imaging“, in 2019 IEEE International Ultrasonics Symposium (IUS 2019), Online, 2019, S. 1379–1382. doi: 10.1109/ultsym.2019.8925794.
[8]
M. Piepenbrock, A. Brieden, S. Dencks, und G. Schmitz, „Advancing the feasible microbubble concentration in super-resolution“, in 2019 IEEE International Ultrasonics Symposium (IUS 2019), Online, 2019, S. 388–391. doi: 10.1109/ultsym.2019.8925761.
[9]
S. Dencks, M. Piepenbrock, und G. Schmitz, „Maximum-likelihood estimation to assess the degree of reconstruction of microvasculature from super-resolution US Imaging“, in 2019 IEEE International Ultrasonics Symposium (IUS 2019), Online, 2019, S. 376–379. doi: 10.1109/ultsym.2019.8925640.
[10]
S. Rumble, G. Schmitz, und S. Dencks, „Sonographic visibility of cannulas using convex ultrasound transducers“, Biomedical engineering, Bd. 64, Nr. 6, S. 691–698, Okt. 2019, doi: 10.1515/bmt-2018-0174.
[11]
T. C. Kranemann u. a., „An MPI-compatible HIFU transducer: experimental evaluation of interferences.“, International journal on magnetic particle imaging, Bd. 4, Nr. 2, Art. Nr. 1811003, März 2019, doi: 10.18416/ijmpi.2018.1811003.

2018

[1]
A. Rix u. a., „Advanced ultrasound technologies for diagnosis and therapy“, Journal of nuclear medicine, Bd. 59, Nr. 5, S. 740–746, 2018, doi: 10.2967/jnumed.117.200030.
[2]
T. C. Kranemann, T. Ersepke, und G. Schmitz, „Real-time magnetomotive ultrasound imaging using a recursive estimator“, in 2018 IEEE International Ultrasonics Symposium (IUS 2018), Kobe, 2018, S. 1162–1165. doi: 10.1109/ultsym.2018.8579643.
[3]
A. Ihrig und G. Schmitz, „Accelerating nonlinear speed of sound reconstructions using a randomized block Kaczmarz algorithm“, in 2018 IEEE International Ultrasonics Symposium (IUS 2018), Kobe, 2018, S. 475–478. doi: 10.1109/ultsym.2018.8580199.
[4]
H.-M. Schwab und G. Schmitz, „Full-wave ultrasound reconstruction with linear arrays based on a Fourier split-step approach“, in 2018 IEEE International Ultrasonics Symposium (IUS 2018), Kobe, 2018, S. 599–602. doi: 10.1109/ultsym.2018.8580147.
[5]
S. Dencks u. a., „Relative blood volume estimation from clinical super-resolution US imaging in breast cancer“, in 2018 IEEE International Ultrasonics Symposium (IUS 2018), Kobe, 2018, S. 318–321. doi: 10.1109/ultsym.2018.8580013.
[6]
A. Ihrig und G. Schmitz, „High frequency ultrasonic tomography using optimal transport distance“, in 2018 IEEE International Ultrasonics Symposium (IUS 2018), Kobe, 2018, S. 355–358. doi: 10.1109/ultsym.2018.8579820.
[7]
M. Piepenbrock, S. Dencks, und G. Schmitz, „Performance of foreground-background separation algorithms for the detection of microbubbles in super-resolution imaging“, in 2018 IEEE International Ultrasonics Symposium (IUS 2018), Kobe, 2018, S. 1651–1654. doi: 10.1109/ultsym.2018.8579815.
[8]
T. Opacic u. a., „Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization“, Nature communications, Bd. 9, Nr. 1, Art. Nr. 1527, Apr. 2018, doi: 10.1038/s41467-018-03973-8.
[9]
O. Abbasi u. a., „Unilateral deep brain stimulation suppresses alpha and beta oscillations in sensorimotor cortices“, NeuroImage, Bd. 174, S. 201–207, 2018, doi: 10.1016/j.neuroimage.2018.03.026.
[10]
M. Piepenbrock u. a., „Performance of Foreground-Background Separation Algorithms for the Detection of Microbubbles in Super -Resolution Imaging“, IEEE International Ultrasonics Symposium (IUS), 2018, Publiziert, [Online]. Verfügbar unter: https://publons.com/publon/18903809/

2017

[1]
A. Ihrig und G. Schmitz, „Extending the convergence limit of nonlinear speed of sound reconstructions towards common ultrasonic frequencies“, in 2017 IEEE International Ultrasonics Symposium (IUS 2017), Washington, DC, 2017, S. 109–113. doi: 10.1109/ultsym.2017.8092993.
[2]
B. Theek, T. Opacic, D. Möckel, G. Schmitz, T. Lammers, und F. Kießling, „Automated generation of reliable blood velocity parameter maps from contrast-enhanced ultrasound data“, Contrast media & molecular imaging, Bd. 2017, Nr. 5, Art. Nr. 2098324, 2017, doi: 10.1155/2017/2098324.
[3]
M. F. Schiffner und G. Schmitz, „Notice of removal: Random incident sound waves for fast compressed pulse-echo ultrasound imaging“, in 2017 IEEE International Ultrasonics Symposium (IUS 2017), Washington, DC, 2017, Zurückgezogen. doi: 10.1109/ultsym.2017.8091509.
[4]
H.-M. Schwab, A. Ihrig, D. Depke, S. Hermann, M. Schäfers, und G. Schmitz, „Aberration correction in photoacoustic imaging using paraxial backpropagation“, in 2017 IEEE International Ultrasonics Symposium (IUS 2017), Washington, DC, 2017, S. 575–578. doi: 10.1109/ultsym.2017.8092800.
[5]
T. Ersepke, T. C. Kranemann, und G. Schmitz, „Frequency response of soft tissue displacements induced by the force on magnetic nanoparticles“, in 2017 IEEE International Ultrasonics Symposium (IUS 2017), Washington, DC, 2017, S. 1120–1123. doi: 10.1109/ultsym.2017.8092731.
[6]
T. C. Kranemann, T. Ersepke, und G. Schmitz, „Towards the integration of an MPI compatible ultrasound transducer“, International journal on magnetic particle imaging, Bd. 3, Nr. 1, Art. Nr. 1703016, 2017, [Online]. Verfügbar unter: https://journal.iwmpi.org/index.php/iwmpi/article/view/86
[7]
T. C. Kranemann, T. Ersepke, und G. Schmitz, „Magnetomotive ultrasound imaging using the onlinear magnetization of nanoparticles“, in 2017 IEEE International Ultrasonics Symposium (IUS 2017), Washington, DC, 2017, S. 1111–1114. doi: 10.1109/ultsym.2017.8092968.
[8]
S. Dencks, M. Piepenbrock, G. Schmitz, T. Opacic, und F. Kießling, „Determination of adequate measurement times for super-resolution characterization of tumor vascularization“, in 2017 IEEE International Ultrasonics Symposium (IUS 2017), Washington, DC, 2017, S. 1402–1405. doi: 10.1109/ultsym.2017.8092351.
[9]
H.-M. Schwab u. a., „Aberration correction in photoacoustic imaging using paraxial backpropagation“, in 2017 IEEE International Ultrasonics Symposium (IUS), Nov. 2017, Publiziert. doi: 10.1109/ultsym.2017.8092772.
[10]
S. Dencks, T. Opacic, M. Piepenbrock, F. Kiessling, G. Schmitz, und G. Schmitz, „Determination of adequate measurement times for super-resolution characterization of tumor vascularization“, in 2017 IEEE International Ultrasonics Symposium (IUS), Nov. 2017, Publiziert. doi: 10.1109/ultsym.2017.8092020.
[11]
G. Schmitz und G. Schmitz, „Magnetomotive Ultrasound Imaging Using the onlinear Magnetization of Nanoparticles“, IEEE International Ultrasonics Symposium (IUS), 2017, Publiziert, [Online]. Verfügbar unter: https://publons.com/publon/14972057/

2016

[1]
D. Ackermann und G. Schmitz, „Detection and tracking of multiple microbubbles in ultrasound B-mode images“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 63, Nr. 1, S. 72–82, 2016, doi: 10.1109/tuffc.2015.2500266.
[2]
M. F. Schiffner und G. Schmitz, „A low-rate parallel Fourier domain beamforming method for ultrafast pulse-echo imaging“, in 2016 IEEE International Ultrasonics Symposium (IUS 2016), Tours, 2016, S. 179–182. doi: 10.1109/ultsym.2016.7728419.
[3]
H.-M. Schwab, M. Beckmann, und G. Schmitz, „Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements“, Biomedical optics express, Bd. 7, Nr. 4, S. 1468–1478, März 2016, doi: 10.1364/boe.7.001468.
[4]
M. F. Schiffner und G. Schmitz, „Ultrafast image acquisition in pulse-echo ultrasound imaging using compressed sensing“, in 2016 IEEE International Ultrasonics Symposium (IUS 2016), Tours, 2016, S. 2067–2069. doi: 10.1109/ultsym.2016.7728899.
[5]
O. Abbasi, J. Hirschmann, G. Schmitz, A. Schnitzler, und M. Butz, „Rejecting deep brain stimulation artefacts from MEG data using ICA and mutual information“, Journal of neuroscience methods, Bd. 268, S. 131–141, 2016, doi: 10.1016/j.jneumeth.2016.04.010.
[6]
S. Dencks, D. Ackermann, und G. Schmitz, „Evaluation of bubble tracking algorithms for super-resolution imaging of microvessels“, in 2016 IEEE International Ultrasonics Symposium (IUS 2016), Tours, 2016, S. 496–499. doi: 10.1109/ultsym.2016.7728500.
[7]
I. Spivak u. a., „Low-Dose molecular ultrasound imaging with E-selectin-targeted PBCA microbubbles“, Molecular imaging and biology, Bd. 18, Nr. 2, S. 180–190, 2016, doi: 10.1007/s11307-015-0894-9.
[8]
H.-M. Schwab und G. Schmitz, „An advanced interpolation approach for photoacoustic clutter reduction based on a linear plane wave scatter model“, in 2016 IEEE International Ultrasonics Symposium (IUS 2016), Tours, 2016, S. 47–50. doi: 10.1109/ultsym.2016.7728386.
[9]
T. Ersepke, T. C. Kranemann, und G. Schmitz, „Phantom characterization using the mechanical resonance of a tissue embedded magnetic sphere“, in 2016 IEEE International Ultrasonics Symposium (IUS 2016), Tours, 2016, S. 705–708. doi: 10.1109/ultsym.2016.7728553.
[10]
T. C. Kranemann, T. Ersepke, und G. Schmitz, „Design of a magnetic particle imaging compatible HIFU transducer array“, in 2016 IEEE International Ultrasonics Symposium (IUS 2016), Tours, 2016, S. 405–408. doi: 10.1109/ultsym.2016.7728476.

2015

[1]
M. Beckmann, H.-M. Schwab, und G. Schmitz, „Optimized SNR simultaneous multispectral photoacoustic imaging with laser diodes“, Optics express, Bd. 23, Nr. 2, S. 1816–1828, 2015, doi: 10.1364/oe.23.001816.
[2]
D. Ackermann und G. Schmitz, „Super-resolution velocity estimation in microvessels using Multiple Hypothesis Tracking“, in 2015 IEEE International Ultrasonics Symposium (IUS 2015), Taipei, 2015, S. 188–191. doi: 10.1109/ultsym.2015.0219.
[3]
L. Salehi und G. Schmitz, „Increasing the robustness and convergence rate of the Kaczmarz method in reconstructing the speed of sound in solid materials using analytic signals“, in 2015 IEEE International Ultrasonics Symposium (IUS 2015), Taipei, 2015, S. 160–163. doi: 10.1109/ultsym.2015.0074.
[4]
H.-M. Schwab, M. Beckmann, und G. Schmitz, „Photoacoustic clutter reduction using plane wave ultrasound and a linear scatter estimation approach“, in 2015 IEEE International Ultrasonics Symposium (IUS 2015), Taipei, 2015, S. 192–195. doi: 10.1109/ultsym.2015.0237.
[5]
S. Dencks und G. Schmitz, „Assessment of the potential of beamforming for needle enhancement in punctures“, in 2015 IEEE International Ultrasonics Symposium (IUS 2015), Taipei, 2015, S. 1–4. doi: 10.1109/ultsym.2015.0301.
[6]
M. Beckmann, H.-M. Schwab, und G. Schmitz, „Optimizing a single-sided reflection mode photoacoustic setup for clinical imaging“, in 2015 IEEE International Ultrasonics Symposium (IUS 2015), Taipei, 2015, S. 1328–1331. doi: 10.1109/ultsym.2015.0033.
[7]
M. Beckmann, H.-M. Schwab, und G. Schmitz, „Optimizing simultaneous multispectral emission photoacoustics“, in 2015 IEEE International Ultrasonics Symposium (IUS 2015), Taipei, 2015, S. 1953–1955. doi: 10.1109/ultsym.2015.0393.
[8]
K. Rohde, R. Barkmann, M. Daugschies, C.-C. Gluer, und G. Schmitz, „Model to estimate the sound velocity in a circular wave guide in a through transmission measurement setup from multiple receivers“, in 6th European Symposium on Ultrasonic Characterization of Bone, Korfu, 2015, S. 66–70. doi: 10.1109/esucb.2015.7169917.
[9]
C. Brand u. a., „Low-energy ultrasound treatment improves regional tumor vessel infarction by retargeted tissue factor“, Journal of ultrasound in medicine, Bd. 34, Nr. 7, S. 1227–1236, 2015, doi: 10.7863/ultra.34.7.1227.
[10]
A. M. Sprinkart u. a., „Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping“, Journal of cardiovascular magnetic resonance, Bd. 17, Nr. 1, S. 12-1-12–9, 2015, doi: 10.1186/s12968-015-0127-z.
[11]
S. Dencks, T. Mäcken, und G. Schmitz, „Potenzial zur Verbesserung der Sichtbarkeit von Kanülen durch Festkörperresonanzen“, Ultraschall in der Medizin, Bd. 36, Nr. S 01, S. A363-1, 2015, doi: 10.1055/s-0035-1558804.

2014

[1]
M. Beckmann, H.-M. Schwab, und G. Schmitz, „Multispectral photoacoustic coded excitation with low PRF high power laser diodes“, in 2014 IEEE International Ultrasonics Symposium (IUS 2014), Chicago, Ill., 2014, S. 1288–1291. doi: 10.1109/ultsym.2014.0318.
[2]
M. Hesse und G. Schmitz, „Nonlinear compressibility and mass density reconstruction under plane wave excitation using raw data with noise“, in 2014 IEEE International Ultrasonics Symposium (IUS 2014), Chicago, Ill., 2014, S. 125–128. doi: 10.1109/ultsym.2014.0032.
[3]
L. Salehi und G. Schmitz, „Nonlinear reconstruction of the speed of sound in soft tissues: a comparison between the simulation results applying Kaczmarz and Contrast Source Inversion methods“, in 2014 IEEE International Ultrasonics Symposium (IUS 2014), Chicago, Ill., 2014, S. 2221–2224. doi: 10.1109/ultsym.2014.0553.
[4]
S. Dencks, H. Susanti, und G. Schmitz, „Needle visibility for deep punctures with curved arrays“, in 2014 IEEE International Ultrasonics Symposium (IUS 2014), Chicago, Ill., 2014, S. 1880–1883. doi: 10.1109/ultsym.2014.0467.
[5]
A. M. Sprinkart u. a., „Ultrafast Volumetric B1(+) mapping for improved radiofrequency shimming in 3 tesla body MRI“, Journal of magnetic resonance imaging, Bd. 40, Nr. 4, S. 857–863, 2014, doi: 10.1002/jmri.24438.
[6]
A. Buchkremer u. a., „Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks“, Materials Research Express, Bd. 1, Nr. 4, Art. Nr. 045015, 2014, doi: 10.1088/2053-1591/1/4/045015.
[7]
M. F. Schiffner und G. Schmitz, „Pulse-echo ultrasound imaging combining compressed sensing and the fast multipole method“, in 2014 IEEE International Ultrasonics Symposium (IUS 2014), Chicago, Ill., 2014, S. 2205–2208. doi: 10.1109/ultsym.2014.0549.
[8]
M. F. Schiffner und G. Schmitz, „On the separate recovery of spatial fluctuations in compressibility and mass density in pulse-echo ultrasound imaging using linear inverse scattering“, The journal of the Acoustical Society of America, Bd. 135, Nr. 4, S. 2179–2179, 2014, doi: 10.1121/1.4877088.
[9]
H.-M. Schwab, M. Beckmann, und G. Schmitz, „Iterative photoacoustic reconstruction in heterogeneous media using the Kaczmarz method“, in 2014 IEEE International Ultrasonics Symposium (IUS 2014), Chicago, Ill., 2014, S. 33–36. doi: 10.1109/ultsym.2014.0009.
[10]
A. Buchkremer u. a., „Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks“, Materials Research Express, 2014, Publiziert.

2013

[1]
M. F. Schiffner und G. Schmitz, „An application of compressed sensing to plane wave pulse-echo ultrasound imaging“, gehalten auf der IEEE International Symposium on Biomedical Imaging, San Francisco, 9. April 2013, Publiziert.
[2]
M. Siepmann u. a., „Phase shift variance imaging - a new technique for destructive microbubble imaging“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 60, Nr. 5, S. 909–923, 2013, doi: 10.1109/tuffc.2013.2648.
[3]
S. Dencks und G. Schmitz, „Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 60, Nr. 9, S. 1884–1895, 2013, doi: 10.1109/tuffc.2013.2773.
[4]
S. Wrenn u. a., „Nesting microbubbles: influence on inertial cavitation, imaging, and cell death“, ACS national meeting / American Chemical Society, Bd. 245, 2013.
[5]
S. M. Dicker u. a., „Influence of shell composition on the resonance frequency of microbubble contrast agents“, Ultrasound in medicine and biology, Bd. 39, Nr. 7, S. 1292–1302, 2013, doi: 10.1016/j.ultrasmedbio.2013.02.462.
[6]
M. F. Schiffner und G. Schmitz, „Compensating the combined effects of absorption and dispersion in plane wave pulse-echo ultrasound imaging using sparse recovery“, in 2013 IEEE International Ultrasonics Symposium (IUS 2013), Prag, 2013, S. 573–576. doi: 10.1109/ultsym.2013.0148.
[7]
M. F. Schiffner und G. Schmitz, „The separate recovery of spatial fluctuations in compressibility and mass density in plane wave pulse-echo ultrasound imaging“, in 2013 IEEE International Ultrasonics Symposium (IUS 2013), Prag, 2013, S. 577–580. doi: 10.1109/ultsym.2013.0149.
[8]
D. Ackermann und G. Schmitz, „Reconstruction of flow velocity inside vessels by tracking single microbubbles with an MCMC data association algorithm“, in 2013 IEEE International Ultrasonics Symposium (IUS 2013), Prag, 2013, S. 627–630. doi: 10.1109/ultsym.2013.0162.
[9]
M. Beckmann und G. Schmitz, „Photoacoustic coded excitation using pulse position modulation“, in 2013 IEEE International Ultrasonics Symposium (IUS 2013), Prag, 2013, S. 1853–1856. doi: 10.1109/ultsym.2013.0472.
[10]
M. Hesse, L. Salehi, und G. Schmitz, „Nonlinear simultaneous reconstruction of inhomogeneous compressibility and mass density distributions in unidirectional pulse-echo ultrasound imaging“, Physics in medicine and biology, Bd. 58, Nr. 17, S. 6163–6178, 2013, doi: 10.1088/0031-9155/58/17/6163.
[11]
M. Hesse und G. Schmitz, „Evaluation of a nonlinear simultaneous compressibility and mass density reconstruction algorithm in contrast to established linear ultrasound imaging approaches“, in 2013 IEEE International Ultrasonics Symposium (IUS 2013), Prag, 2013, S. 1444–1447. doi: 10.1109/ultsym.2013.0366.
[12]
L. Salehi und G. Schmitz, „Nonlinear reconstruction of bulk and shear moduli variations using the Kazmarcz method“, in 2013 IEEE International Ultrasonics Symposium (IUS 2013), Prag, 2013, S. 611–614. doi: 10.1109/ultsym.2013.0158.
[13]
M. Hesse und G. Schmitz, „Effect of noise on a nonlinear compressibility reconstruction approach under various excitation modi“, Biomedical engineering, Bd. 58, Nr. Suppl.1, Art. Nr. 4274, 2013, doi: 10.1515/bmt-2013-4274.
[14]
S. M. Dicker, M. Mleczko, G. Schmitz, und S. Wrenn, „Size distribution of microbubbles as a function of shell composition“, Ultrasonics, Bd. 53, Nr. 7, S. 1363–1367, 2013, doi: 10.1016/j.ultras.2013.04.004.
[15]
S. Dencks, G. Schmitz, und G. Schmitz, „Estimation of Multipath Transmission Parameters for Quantitative Ultrasound Measurements of Bone“, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2013, Publiziert.
[16]
M. C. Hesse, L. Salehi, G. Schmitz, und G. Schmitz, „Nonlinear, simultaneous reconstruction of inhomogeneous compressibility and mass density distributions in unidirectional, pulse-echo ultrasound imaging“, Physics in Medicine and Biology, 2013, Publiziert.

2012

[1]
B. Gutrath u. a., „Size dependent, multispectral photoacoustic response of gold nanoparticles“, gehalten auf der Nanomaterials for biomedical technologies, Frankfurt am Main, 6. März 2012, Publiziert.
[2]
S. Wrenn u. a., „Bursting bubbles and bilayers“, Theranostics, Bd. 2, Nr. 12, S. 1140–1159, 2012, doi: 10.7150/thno.4305.
[3]
M. Klee u. a., „Piezoelectric thin films: a technology platform for innovative devices“, Integrated ferroelectrics, Bd. 134, Nr. 1, S. 25–36, 2012, doi: 10.1080/10584587.2012.663657.
[4]
S. Wrenn u. a., „Microcapsules: reverse sonoporation and long-lasting, safe contrast“, in Acoustical Imaging, Warschau, 2012, Bd. 31, S. 81–90. doi: 10.1007/978-94-007-2619-2_9.
[5]
M. F. Schiffner und G. Schmitz, „Plane wave pulse echo ultrasound diffraction tomography with a fixed linear transducer array“, in Acoustical Imaging, Warschau, 2012, Bd. 31, S. 19–30. doi: 10.1007/978-94-007-2619-2_3.
[6]
M. Mleczko, S. M. Dicker, S. Wrenn, und G. Schmitz, „Influence of microbubble shell chemistry on the destruction threshold of ultrasound contrast agent microbubbles“, in Acoustical Imaging, Warschau, 2012, Bd. 31, S. 91–101. doi: 10.1007/978-94-007-2619-2_10.
[7]
F. Kiessling, G. Schmitz, und J. Gätjens, „Design and use of contrast agents for ultrasound imaging: Chapter 7.3“, in Biomedical imaging, Bd. 15, M. Braddock, Hrsg. Cambridge: RSC Publ, 2012, S. 391–410. doi: 10.1039/9781849732918-00391.
[8]
G. Schmitz, „Biomedical sonography“, in Biomedical imaging, R. Salzer, Hrsg. Hoboken, NJ: John Wiley and Sons, 2012, S. 331–367. doi: 10.1002/9781118271933.ch11.
[9]
B. S. Gutrath u. a., „Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles“, Nanotechnology, Bd. 23, Nr. 22, S. 225707-1-225707–10, 2012, doi: 10.1088/0957-4484/23/22/225707.
[10]
K. Hensel, A. Maghnouj, S. Hahn, und G. Schmitz, „Robust adaption algorithm for effective and safe sonoporation therapy“, Biomedical engineering, Bd. 57, Nr. Suppl. 1, S. 128–131, 2012, doi: 10.1515/bmt-2012-4070.
[11]
M. F. Schiffner, T. Jansen, und G. Schmitz, „Compressed sensing for fast image acquisition in pulse-echo ultrasound“, Biomedical engineering, Bd. 57, Nr. Suppl. 1 Track-B, S. 192–195, 2012, doi: 10.1515/bmt-2012-4142.
[12]
M. Siepmann, J. Bzyl, S. Fokong, F. Kiessling, und G. Schmitz, „Quantitative phase shift variance imaging“, Biomedical engineering, Bd. 57, Nr. Suppl. 1 TRACK-B, S. 184–187, 2012, doi: 10.1515/bmt-2012-4125.
[13]
M. Beckmann, L. Girke, und G. Schmitz, „Real-time processing of coded photoacoustic signals“, Biomedical engineering, Bd. 57, Nr. Suppl. 1, S. 188–191, 2012, doi: 10.1515/bmt-2012-4140.
[14]
T. Jansen, M. F. Schiffner, und G. Schmitz, „Fast 3D pulse-echo ultrasound imaging using diffraction tomography“, Biomedical engineering, Bd. 57, Nr. S1, S. 196, 2012, doi: 10.1515/bmt-2012-4146.
[15]
D. Ackermann und G. Schmitz, „Investigation of kerfless PZT and PVDF based ultrasound arrays“, Biomedical engineering, Bd. 57, Nr. Suppl. 1, S. 119–122, 2012, doi: 10.1515/bmt-2012-4456.
[16]
M. Beckmann u. a., „Size dependent photoacoustic signal response of gold nanoparticles using a multispectral laser diode system“, in 2012 IEEE International Ultrasonics Symposium, Dresden, 2012, S. 2336–2339. doi: 10.1109/ultsym.2012.0584.
[17]
M. Hesse und G. Schmitz, „Comparison of linear and nonlinear unidirectional imaging approaches in ultrasound breast imaging“, in 2012 IEEE International Ultrasonics Symposium, Dresden, 2012, S. 1295–1298. doi: 10.1109/ultsym.2012.0323.
[18]
M. F. Schiffner und G. Schmitz, „Fast image acquisition in pulse-echo ultrasound imaging employing using compressive sensing“, in 2012 IEEE International Ultrasonics Symposium, Dresden, 2012, S. 1944–1947. doi: 10.1109/ultsym.2012.0487.
[19]
L. Salehi und G. Schmitz, „Nonlinear reconstruction of compressibility and density variations using the Kaczmarz method“, in 2012 IEEE International Ultrasonics Symposium, Dresden, 2012, S. 386–389. doi: 10.1109/ultsym.2012.0095.
[20]
D. Ackermann und G. Schmitz, „Investigation of kerfless ultrasound arrays using inverse systems“, in 2012 IEEE International Ultrasonics Symposium, Dresden, 2012, S. 2807–2810. doi: 10.1109/ultsym.2012.0176.
[21]
S. Dencks und G. Schmitz, „Separation of multipath transmission signals for quantitative ultrasound measurement at bone: a comparison study“, in 2012 IEEE International Ultrasonics Symposium, Dresden, 2012, S. 1019–1022. doi: 10.1109/ultsym.2012.0255.
[22]
C.-S. Friedrich u. a., „Photoacoustic blood oxygenation imaging based on semiconductor lasers“, Photonics and optoelectronics, Bd. 1, Nr. 3, S. 48–54, 2012, [Online]. Verfügbar unter: http://www.jpo-journal.org/Download.aspx?ID=4071
[23]
F. Kiessling, J. Bzyl, S. Fokong, M. Siepmann, G. Schmitz, und M. Palmowski, „Targeted ultrasound imaging of cancer: an emerging technology on its way to clinics“, Current pharmaceutical design, Bd. 18, Nr. 15, S. 2184–2199, 2012, doi: 10.2174/138161212800099900.
[24]
G. Schmitz und G. Schmitz, „Biomedical Sonography“, in Biomedical Imaging, 2012.
[25]
C.-S. Friedrich u. a., „Photoacoustic Blood Oxygenation Imaging Based on Semiconductor Lasers“, Photonics and Optoelectronics, 2012, Publiziert.
[26]
B. S. Gutrath u. a., „Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles“, Nanotechnology, 2012, Publiziert.
[27]
F. Kiessling u. a., „Targeted Ultrasound Imaging of Cancer: An Emerging Technology on its Way to Clinics“, Current Pharmaceutical Design, 2012, Publiziert.

2011

[1]
L. Salehi, P. Gifani, und G. Schmitz, „Detection of atherosclerosis from vessel wall vibrations using non-linear features“, in 2011 IEEE International Ultrasonics Symposium (IUS 2011), Orlando, Fla., 2011, S. 280–283. doi: 10.1109/ultsym.2011.0067.
[2]
S. Dicker, M. Mleczko, K. Hensel, A. Bartolomeo, G. Schmitz, und S. P. Wrenn, „Co-encapsulation of lipid microbubbles within polymer microcapsules for contrast applications“, Bubble science, engineering & technology, Bd. 3, Nr. 1, S. 12–19, 2011, doi: 10.1179/1758897911y.0000000002.
[3]
M. Klee u. a., „Piezoelectric thin film platform for ultrasound transducer arrays“, in 2011 IEEE International Ultrasonics Symposium (IUS 2011), Orlando, Fla., 2011, S. 196–199. doi: 10.1109/ultsym.2011.6293445.
[4]
K. Hensel und G. Schmitz, „Performance evaluation of an automatic controlled sonoporation therapy device“, in 2011 IEEE International Ultrasonics Symposium (IUS 2011), Orlando, Fla., 2011, S. 1451–1454. doi: 10.1109/ultsym.2011.0359.
[5]
M. F. Schiffner und G. Schmitz, „Fast pulse-echo ultrasound imaging employing compressive sensing“, in 2011 IEEE International Ultrasonics Symposium (IUS 2011), Orlando, Fla., 2011, S. 688–691. doi: 10.1109/ultsym.2011.0167.
[6]
M. Siepmann, J. Bzyl, M. Palmowski, F. Kiessling, und G. Schmitz, „Imaging tumor vascularity by tracing single microbubbles“, in 2011 IEEE International Ultrasonics Symposium (IUS 2011), Orlando, Fla., 2011, S. 1906–1909. doi: 10.1109/ultsym.2011.0476.
[7]
S. Fokong, M. Siepmann, Z. Liu, G. Schmitz, F. Kiessling, und J. Gätjens, „Advanced characterization and refinement of poly N-butyl cyanoacrylate microbubbles for ultrasound imaging“, Ultrasound in medicine and biology, Bd. 37, Nr. 10, S. 1622–1634, 2011, doi: 10.1016/j.ultrasmedbio.2011.07.001.
[8]
K. Hensel, M. Mienkina, und G. Schmitz, „Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments“, Ultrasound in medicine and biology, Bd. 37, Nr. 12, S. 2105–2115, 2011, doi: 10.1016/j.ultrasmedbio.2011.09.007.
[9]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, G. Schmitz, und A. Eder, „Ex­pe­ri­men­tal eva­lua­ti­on of mul­tis­pec­tral pho­toa­coustic coded ex­ci­ta­ti­on using or­tho­go­nal uni­po­lar golay codes“, in 442. Wilhelm und Else Heraeus-Seminar „Molecular Imaging“ in Bad Honnef, October 5th - 8th, 2009, 2011, Publiziert.
[10]
M. Beckmann, M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, und G. Schmitz, „Photoacoustic coded excitation using periodically perfect sequences“, in 2011 IEEE International Ultrasonics Symposium (IUS 2011), Orlando, Fla., 2011, S. 1179–1182. doi: 10.1109/ultsym.2011.0290.
[11]
C.-S. Friedrich u. a., „Quantitative photoacoustic blood oxygenation measurement of whole porcine blood samples using a multi-wavelength semiconductor laser system“, in Diffuse optical imaging III, München, 2011, Bd. 8088, S. 1–9. doi: 10.1117/12.889682.
[12]
S. Fokong u. a., „Advanced Characterization and Refinement of Poly n-Butyl Cyanoacrylate Microbubbles for Ultrasound Imaging“, Ultrasound in Medicine & Biology, 2011, Publiziert.
[13]
K. Hensel, M. Mienkina, G. Schmitz, und G. Schmitz, „Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments“, Ultrasound in Medicine & Biology, 2011, Publiziert.
[14]
J. Bzyl u. a., „Molecular and functional ultrasound imaging in differently agressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38)“, European Radiology, 2011, Publiziert.

2010

[1]
K. Hensel, D. Artemjew, und G. Schmitz, „Verfahren zur Schätzung und Kompensation der akustischen Dämpfung von Gewebeschichten durch akustische Beobachtung von Mikroblasen während der Sonoporation“, gehalten auf der Deutsche Gesellschaft für Biomedizinische Technik. Jahrestagung, Rostock, 7. Oktober 2010, Publiziert.
[2]
K. Hensel und G. Schmitz, „Method for the estimation and compensation of attenuating tissue layers by the acoustic observation of microbubbles for sonoporation therapy“, in 2010 IEEE International Ultrasonics Symposium (IUS), San Diego, Calif., 2010, S. 1700–1703. doi: 10.1109/ultsym.2010.5935486.
[3]
M. Siepmann u. a., „Phase shift variance imaging for contrast agent detection“, in 2010 IEEE International Ultrasonics Symposium (IUS), San Diego, Calif., 2010, S. 1944–1947. doi: 10.1109/ultsym.2010.5935663.
[4]
M. F. Schiffner und G. Schmitz, „Rapid measurement of ultrasound transducer fields in water employing compressive sensing“, in 2010 IEEE International Ultrasonics Symposium (IUS), San Diego, Calif., 2010, S. 1849–1852. doi: 10.1109/ultsym.2010.5935483.
[5]
S. Dicker, M. Mleczko, G. Schmitz, und S. P. Wrenn, „Determination of microbubble cavitation threshold pressure as function of shell chemistry“, Bubble science, engineering & technology, Bd. 2, Nr. 2, S. 55–64, 2010, doi: 10.1179/1758897910y.0000000001.
[6]
M. Klee u. a., „Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches“, in Fundamentals and Technology of Multifunctional Oxide Thin Films, Straßburg, 2010, Bd. 8, S. 012008–1. doi: 10.1088/1757-899x/8/1/012008.
[7]
M. Siepmann, M. Reinhardt, und G. Schmitz, „A statistical model for the quantification of microbubbles in destructive imaging“, Investigative radiology, Bd. 45, Nr. 10, S. 592–599, 2010, doi: 10.1097/rli.0b013e3181ef3741.
[8]
D. Vlaskou u. a., „Magnetic microbubbles: magnetically targeted and ultrasound-triggered vectors for gene delivery in vitro“, in 8th International Conference on the Scientific and Clinical Applications of Magnetic Carriers, 2010, Bd. 1311, S. 485–494. doi: 10.1063/1.3530059.
[9]
M. Siepmann und G. Schmitz, „Limitations of ultrasound speckle flow imaging“, Biomedical engineering, Bd. 55, Nr. S1, 2010.
[10]
M. Mleczko, S. Dicker, S. Wrenn, und G. Schmitz, „Determination of the inertial cavitation threshold of ultrasound contrast agents“, Biomedical engineering, Bd. 55, Nr. S1, 2010.
[11]
M. F. Schiffner und G. Schmitz, „Measurement of ultrasound felds using compressive sensing“, Biomedical engineering, Bd. 55, Nr. S1, 2010.
[12]
M. Beckmann, M. Mienkina, und G. Schmitz, „Nutzung von imperfekten Codierstrategien in der photoakustischen Bildgebung“, Biomedical engineering, Bd. 22, Nr. S1, S. A5.1.3, 2010.
[13]
D. Vlaskou u. a., „Magnetic and acoustically active lipospheres for magnetically targeted nucleic acid delivery“, Advanced functional materials, Bd. 20, Nr. 22, S. 3881–3894, 2010, doi: 10.1002/adfm.200902388.
[14]
M. Mienkina u. a., „Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes“, Optics express, Bd. 18, Nr. 9, S. 9076–9087, 2010, doi: 10.1364/oe.18.009076.
[15]
M. Beckmann, M. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, und M. R. Hofmann, „Monospectral photoacoustic imaging using Legendre sequences“, in 2010 IEEE International Ultrasonics Symposium (IUS), San Diego, Calif., 2010, S. 386–389. doi: 10.1109/ultsym.2010.5935648.
[16]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, W. G. Wilkening, M. Hofmann, und G. Schmitz, „Experimental evaluation of photoacoustic coded excitation using unipolar golay codes“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 57, Nr. 7, S. 1583–1593, 2010, doi: 10.1109/tuffc.2010.1588.
[17]
A. Daigeler u. a., „Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma“, Ultrasound in medicine and biology, Bd. 36, Nr. 11, S. 1893–1906, 2010, doi: 10.1016/j.ultrasmedbio.2010.08.009.
[18]
S. Dencks, G. Schmitz, R. Barkmann, und C.-C. Gluer, „Model-based parameter estimation in the frequency domain for Quantitative Ultrasound measurement of bone“, in 2009 IEEE Ultrasonics Symposium, Rom, Apr. 2010, S. 554–557. doi: 10.1109/ultsym.2009.5441828.
[19]
M. Siepmann, M. Reinhardt, G. Schmitz, und G. Schmitz, „A Statistical Model for the Quantification of Microbubbles in Destructive Imaging“, Investigative Radiology, 2010, Publiziert.
[20]
S. Dicker, M. Mleczko, G. Schmitz, S. Wrenn, und G. Schmitz, „Determination of Microbubble Cavitation Threshold Pressure as Function of Shell Chemistry“, Bubble Science, Engineering, and Technology, 2010, Publiziert.
[21]
M. Mienkina u. a., „Experimental Evaluation of Photoacoustic Coded Excitation using Unipolar Golay Codes“, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, Publiziert.
[22]
D. Vlaskou u. a., „Magnetic Microbubbles: Magnetically Targeted and Ultrasound-Triggered Vectors for Gene Delivery in Vitro“, in 8th International Conference on the Scientific and Clinical Applications of Magnetic Carriers, 2010. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000287170600068&KeyUID=WOS:000287170600068
[23]
M. P. Mienkina u. a., „Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes“, Optics Express, 2010, Publiziert.
[24]
A. Daigeler u. a., „Synergistic Effects of Sonoporation and Taurolidin/TRAIL on Apoptosis in Human Fibrosarcoma“, Ultrasound in Medicine & Biology, 2010, Publiziert.

2009

[1]
K. Hensel, G. Li, und G. Schmitz, „Evaluation of the local speed-of-sound estimation for the correction of ultrasound compound imaging by speckle analysis“, in Diagnostic imaging, München, 2009, Bd. 2, S. 169–172. doi: 10.1007/978-3-642-03879-2_49.
[2]
M. F. Schiffner, M. Mleczko, und G. Schmitz, „Application of volterra series to the detection of ultrasound contrast agents“, in Diagnostic imaging, München, 2009, Bd. 2, S. 478–481. doi: 10.1007/978-3-642-03879-2_134.
[3]
M. Siepmann, M. Mienkina, und G. Schmitz, „Effect of bubble interaction on contrast agent destruction behaviour under repeated insonation“, in 2009 IEEE Ultrasonics Symposium, Rom, 2009, S. 1243–1246. doi: 10.1109/ultsym.2009.5441407.
[4]
M. F. Schiffner, M. Mleczko, und G. Schmitz, „Evaluation of an analytical solution to the Burgers equation based on Volterra series“, in 2009 IEEE Ultrasonics Symposium, Rom, 2009, S. 1–4. doi: 10.1109/ultsym.2009.5442057.
[5]
M. F. Schiffner, M. Mleczko, und G. Schmitz, „Application of Volterra series to ultrasound imaging“, in Proceedings, Rotterdam, 2009, S. 301–304. [Online]. Verfügbar unter: http://pub.dega-akustik.de/NAG_DAGA_2009/data/articles/000275.pdf
[6]
N. Testoni, K. Hensel, M. Siepmann, N. Speciale, und G. Schmitz, „Fast simulation of second harmonic ultrasound fields“, in 2009 IEEE Ultrasonics Symposium, Rom, 2009, S. 2394–2397. doi: 10.1109/ultsym.2009.5442042.
[7]
N. Testoni, K. Hensel, M. Siepmann, N. Speciale, und G. Schmitz, „Noniterative second harmonic ultrasound filed simulations: an axisymmetric approach“, in Proceedings, Rotterdam, 2009, S. 332–335. [Online]. Verfügbar unter: http://pub.dega-akustik.de/NAG_DAGA_2009/data/articles/000324.pdf
[8]
K. Hensel, R. Haagen, G. Schmitz, A. Maghnouj, und S. A. Hahn, „Evaluation of subharmonic emission from encapsulated microbubbles as an indicator for sonoporation of cell monolayers“, in 2009 IEEE Ultrasonics Symposium, Rom, 2009, S. 19–22. doi: 10.1109/ultsym.2009.5441709.
[9]
M. Mleczko, M. Postema, und G. Schmitz, „Discussion of the application of finite Volterra series for the modeling of the oscillation behavior of ultrasound contrast agents“, Applied acoustics, Bd. 70, Nr. 10, S. 1363–1369, 2009, doi: 10.1016/j.apacoust.2008.09.012.
[10]
S. P. Wrenn, M. Mleczko, und G. Schmitz, „Phospholipid-stabilized microbubbles: influence of shell chemistry on cavitation threshold and binding to giant uni-lamellar vesicles“, Applied acoustics, Bd. 70, Nr. 10, S. 1313–1322, 2009, doi: 10.1016/j.apacoust.2008.09.017.
[11]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, und G. Schmitz, „Multispectral photoacoustic coded excitation using orthogonal unipolar golay codes“, in Diagnostic imaging, München, 2009, Bd. 2, S. 217–220. doi: 10.1007/978-3-642-03879-2_61.
[12]
M. Mienkina, A. Eder, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, und M. Hofmann, „Feasibility study of multispectral photoacoustic coded excitation using orthogonal unipolar Golay codes“, in 2009 IEEE Ultrasonics Symposium, Rom, 2009, S. 108–111. doi: 10.1109/ultsym.2009.5441941.
[13]
C.-S. Friedrich, M.-C. Wawreczko, M. Mienkina, N. C. Gerhardt, G. Schmitz, und M. Hofmann, „Compact semiconductor laser sources for photoacoustic imaging“, in Photons plus ultrasound, San Jose, Calif., 2009, Bd. 10, S. 1–7. doi: 10.1117/12.809261.
[14]
M. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. Hofmann, und G. Schmitz, „Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent“, Biomedical engineering, Bd. 54, Nr. 2, S. 83–88, 2009, doi: 10.1515/bmt.2009.012.
[15]
M. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. R. Hofmann, und G. Schmitz, „Comparison of coding techniques for photoacoustic coded excitation“, in Proceedings, Rotterdam, 2009, S. 313–316. [Online]. Verfügbar unter: http://pub.dega-akustik.de/NAG_DAGA_2009/data/articles/000106.pdf
[16]
A. Daigeler u. a., „Der Effekt von Ultraschall und Sonoporation auf die Wirkung von apoptoseinduzierenden Substanzen bei Fibrosarkomen“, Plastische Chirurgie, 2009, Publiziert.
[17]
M. Mleczko, M. Postema, G. Schmitz, und G. Schmitz, „Discussion of the Application of Finite Volterra Series for the Modeling of the Oscillation Behaviour of Ultrasound Contrast Agents“, Applied Acoustics, 2009, Publiziert.
[18]
K. Hensel, G. Y. Li, G. Schmitz, und G. Schmitz, „Evaluation of the Local Speed-of-Sound Estimation for the Correction of Ultrasound Compound Imaging by Speckle Analysis“, in World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 2 - Diagnostic Imaging, 2009. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000306060900049&KeyUID=WOS:000306060900049
[19]
M. P. Mienkina, C. S. Friedrich, N. C. Gerhardt, M. R. Hofmann, G. Schmitz, und G. Schmitz, „Multispectral Photoacoustic Coded Excitation using Orthogonal Unipolar Golay Codes“, in World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 2 - Diagnostic Imaging, 2009. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000306060900061&KeyUID=WOS:000306060900061

2008

[1]
S. Dencks, R. Barkmann, F. Padilla, P. Laugier, G. Schmitz, und C.-C. Glüer, „Model-based estimation of quantitative ultrasound variables at the proximal femur“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 55, Nr. 6, S. 1304–1315, 2008, doi: 10.1109/tuffc.2008.793.
[2]
N. Lang, S. Hold, G. Schmitz, J. Stypmann, und K. P. Schäfers, „Entwicklung der fusionierten Sono/PET Bildgebung am humanen Herzen“, Nuklearmedizin, Bd. 47, Nr. 2, S. A54, 2008.
[3]
K. Hensel u. a., „Monitoring of insonicated microbubble behavior and their effect on sonoporation supported chemotherapy of fibrosarcoma cells“, in 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerpen, 2008, Bd. 22, S. 1422–1425. doi: 10.1007/978-3-540-89208-3_337.
[4]
M. Siepmann und G. Schmitz, „Comparison of imaging modalities for quantification of cyanoacrylate microbubble concentration“, in 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerpen, 2008, Bd. 22, S. 460–463. doi: 10.1007/978-3-540-89208-3_109.
[5]
S. Dencks, R. Barkmann, C.-C. Glüer, und G. Schmitz, „Signal separation in the frequency domain for quantitative ultrasound measurements of bone“, in 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerpen, 2008, Bd. 22, S. 239–242. doi: 10.1007/978-3-540-89208-3_59.
[6]
K. Hensel, M. Siepmann, A. Maghnouj, S. A. Hahn, und G. Schmitz, „Monitoring and modeling of microbubble behavior during ultrasound mediated transfection of cell monolayers“, in IEEE Ultrasonics Symposium, 2008, Beijing, 2008, S. 1671–1674. doi: 10.1109/ultsym.2008.0408.
[7]
M. Siepmann, M. Palmowski, F. Kießling, und G. Schmitz, „Statistical corrections for the precise estimation of cyanoacrylate microbubble concentration in targeted imaging“, in IEEE Ultrasonics Symposium, 2008, Beijing, 2008, S. 993–996. doi: 10.1109/ultsym.2008.0240.
[8]
G. Schmitz, „Ultrasonic imaging of molecular targets“, Basic research in cardiology, Bd. 103, Nr. 2, S. 174–181, 2008, doi: 10.1007/s00395-008-0709-0.
[9]
V. M. do Nascimento, V. L. S. N. Button, und G. Schmitz, „Simulação de um transdutor piezoelétrico composto por anéis concêntricos com vários tipos de camada de retaguarda“, in Bioengineering solutions for Latin America health, Margarita Island, 2008, Bd. 18, S. 432–435. doi: 10.1007/978-3-540-74471-9_100.
[10]
G. Schmitz, M. Mleczko, und M. Siepmann, „Retrieving multidimensional ultrasonic image information of molecular markers“, in International Conference on Multimedia and Expo, 2008, Hannover, 2008, S. 529–532. doi: 10.1109/icme.2008.4607488.
[11]
M. Mleczko und G. Schmitz, „A method for the determination of the inertial cavitation threshold of ultrasound contrast agents“, in IEEE Ultrasonics Symposium, 2008, Beijing, 2008, S. 1686–1689. doi: 10.1109/ultsym.2008.0412.
[12]
M. Klee u. a., „Thin film piezoelectric MEMs devices“, The journal of the Acoustical Society of America, Bd. 123, Nr. 5, S. 3376, 2008, doi: 10.1121/1.2934005.
[13]
G. Schmitz, „Alleskönner unterwegs im Gefäßsystem: Mikrobläschen versprechen vielfältige Einsatzmöglichkeiten in der Medizintechnik“:, Rubin Sonderheft, Nr. 2, S. 14–19, 2008, [Online]. Verfügbar unter: http://www.ruhr-uni-bochum.de/rubin/rubin-herbst-08/pdf/beitrag2.pdf
[14]
M. P. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, und G. Schmitz, „Evaluation of simplex codes for photoacoustic coded excitation“, in 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerpen, 2008, Bd. 22, S. 444–447. doi: 10.1007/978-3-540-89208-3_105.
[15]
M. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, und G. Schmitz, „Simulation study of photoacoustic coded excitation using Golay codes“, in IEEE Ultrasonics Symposium, 2008, Beijing, 2008, S. 1242–1245. doi: 10.1109/ultsym.2008.0300.

2007

[1]
K. Hensel u. a., „Ultrasound based navigation system for minimally invasive surgery at the lumbar spine within OrthoMIT“, in Advances in medical engineering, Remagen, 2007, Bd. 114, S. 224–229. doi: 10.1007/978-3-540-68764-1_37.
[2]
M. Postema, M. Mleczko, und G. Schmitz, „Mutual attraction of oscillating microbubbles“, in Advances in medical engineering, Remagen, 2007, Bd. 114, S. 75–80. doi: 10.1007/978-3-540-68764-1_12.
[3]
K. P. Schäfers, S. Hold, M. Mienkina, G. Schmitz, und N. Lang, „Combining freehand ultrasound with PET for multimodal cardiovascular imaging“, in IEEE Nuclear Science Symposium conference record, 2007, Honolulu, 2007, Publiziert.
[4]
M. Mleczko, M. Postema, und G. Schmitz, „Nonlinear modeling of ultrasound contrast agents with Wiener series“, in Fortschritte der Akustik, Stuttgart, 2007, S. 333–334.
[5]
S. Dencks, R. Barkmann, F. Padilla, P. Laugier, G. Schmitz, und C.-C. Glüer, „Modellbasierte Signalanalyse quantitativer Ultraschallmessungen am proximalen Femur“, in Fortschritte der Akustik, Stuttgart, 2007, S. 331–332. [Online]. Verfügbar unter: http://pub.dega-akustik.de/DAGA_1999-2008/data/articles/003172.pdf
[6]
M. Mleczko, W. G. Wilkening, und G. Schmitz, „Optimal pulse sequences for the suppression of memoryless tissue harmonics“, in IEEE Ultrasonics Symposium, 2007, New York City, NY, 2007, S. 542–545. doi: 10.1109/ultsym.2007.141.
[7]
N. Lang u. a., „Hybrid 3D Sono/PET in a mouse“, European journal of nuclear medicine & molecular imaging, Bd. 34, S. 1706–1707, 2007, doi: 10.1007/s00259-007-0501-7.
[8]
N. Lang u. a., „Multimodal sono/PET imaging of a mouse“, in IEEE Nuclear Science Symposium conference record, 2007, Honolulu, 2007, Publiziert.
[9]
M. Postema und G. Schmitz, „Ultrasonic bubbles in medicine: Influence of the shell“, Ultrasonics sonochemistry, Bd. 14, Nr. 4, S. 438–444, 2007, doi: 10.1016/j.ultsonch.2006.09.013.
[10]
S. Hold, N. Lang, K. P. Schäfers, M. Mienkina, und G. Schmitz, „Multimodal PET/ultrasound imaging for cardiac molecular imaging“, in IEEE Ultrasonics Symposium, 2007, New York City, NY, 2007, S. 1472–1475. doi: 10.1109/ultsym.2007.370.
[11]
M. Postema, F. J. ten Cate, G. Schmitz, N. de Jong, und A. van Wamel, „Generation of a droplet inside a microbubble with the aid of an ultrasound contrast agent: first result“, Letters in drug design & discovery, Bd. 4, Nr. 1, S. 74–77, 2007, doi: 10.2174/157018007778992847.
[12]
C. Dekomien, S. Hold, K. Hensel, G. Schmitz, und S. Winter, „Registration of intraoperative 3D ultrasound with preoperative MRI data for navigated surgery: first results at the knee“, in Computer assisted orthopaedic surgery, Heidelberg, 2007, 1. Aufl., S. 133–136.
[13]
N. Lang u. a., „Multimodale 3D Sono/PET Bildgebung der Maus“, in Dreiländertagung DGMP Medizinphysik, Bern: DGMP, 2007, S. 12–14.
[14]
K. Hensel, M. Mienkina, und G. Schmitz, „P1B-13 simulation and evaluation of the sound field of an image-guided sonoporation applicator“, in IEEE Ultrasonics Symposium, 2007, New York City, NY, 2007, S. 1321–1324. doi: 10.1109/ultsym.2007.332.
[15]
S. Hold, K. Hensel, C. Dekomien, S. Winter, und G. Schmitz, „Segmentation of blood vessels in 3D ultrasound datasets by a model based region growing algorithm“, in Computer assisted orthopaedic surgery, Heidelberg, 2007, 1. Aufl., S. 601–603. [Online]. Verfügbar unter: http://www.mip-research.de/fileadmin/Dokumente/Publications/HoldHensel2007.pdf
[16]
S. Dencks, R. Barkmann, G. Schmitz, und C.-C. Glüer, „Signal separation for improving quantitative ultrasound measurements of bone“, in Biomedical engineering, Aachen, 2007, Bd. 52, Erg.-Bd.
[17]
S. Hold, N. Lang, K. P. Schäfers, M. Mienkina, und G. Schmitz, „Multimodale Abbildung aus Ultraschall und PET zur Herzdiagnostik in der molekularen Bildgebung“, Biomedical engineering, Bd. 52, Nr. Suppl., S. 2–7, 2007.
[18]
M. Mleczko, W. G. Wilkening, M. Postema, und G. Schmitz, „Optimisation of pulse sequences for ultrasound contrast agent imaging“, Biomedical engineering, Bd. 52, Nr. Suppl., 2007.
[19]
K. Hensel, M. Mienkina, und G. Schmitz, „Simulation und Evaluierung der Schallfeldverteilung eines bildgesteuerten Sonoporationsapplikators“, Biomedical engineering, Bd. 52, Nr. Suppl. 1, 2007.
[20]
S. Winter, C. Dekomien, K. Hensel, S. Hold, G. Schmitz, und W. Teske, „Registrierung von intraoperativem 3D-Ultraschall mit präoperativen MRT-Daten für die computergestützte orthopädische Chirurgie“, Zeitschrift für Orthopädie und Unfallchirurgie, Bd. 145, Nr. 5, S. 586–590, 2007, doi: 10.1055/s-2007-965689.
[21]
M. Mienkina u. a., „Photoacoustic imaging of Fibrosarcoma using RGD-Cy 3 as a targeted contrast agent“, in IEEE Ultrasonics Symposium, 2007, New York City, NY, 2007, S. 2409–2412. doi: 10.1109/ultsym.2007.606.
[22]
M. Mienkina u. a., „Evaluation eines kommerziellen Ultraschallgeräts für den Einsatz im photoakustischen Reflexionsmodus“, Biomedical engineering, Bd. 52, Nr. S1, S. G2-1, 2007.
[23]
V. M. Nascimento, V. L. S. N. Button, G. Schmitz, und G. Schmitz, „Simulation of a piezoelectric transducer composed of concentric ring with a various types of backing layers“, in 4th Latin American Congress on Biomedical Engineering 2007 - Bioengineering Solutions for Latin America Health, 2007, Publiziert. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000261093200100&KeyUID=WOS:000261093200100

2006

[1]
K. M. Hiltawsky, C. Haisch, M. Mienkina, M. Postema, und G. Schmitz, „Optoakustik in der medizinischen Bildgebung“, in Molecular imaging, Bd. 2006,1, W. Niederlag, H. U. Lemke, W. Semmler, und C. Bremer, Hrsg. Dresden: Dresden-Friedrichstadt General Hospital, 2006, S. 177–192.
[2]
M. Postema, K. M. Hiltawsky, und G. Schmitz, „Ultraschallkontrastmittel: Grundlegende Überlegungen“, in Molecular imaging, Bd. 2006,1, W. Niederlag, H. U. Lemke, W. Semmler, und C. Bremer, Hrsg. Dresden: Dresden-Friedrichstadt General Hospital, 2006, S. 221–236.
[3]
M. Klee u. a., „Application of dielectric, ferroelectric and piezoelectric thin film devices in mobile communication and medical systems“, in International symposium on applications of ferroelectrics, Sunset Beach, NC, 2006, S. 1–8. doi: 10.1109/isaf.2006.4387821.
[4]
M. Mleczko, M. Postema, und G. Schmitz, „Identifying nonlinear characteristics for the bulk response of experimental ultrasound contrast agents“, in Proceedings, Vancouver, Kanada, 2006, S. 1369–1372. doi: 10.1109/ultsym.2006.350.
[5]
M. Mienkina, S. Hold, und G. Schmitz, „Generalized simulation of ultrasonic backscattering based on three-dimensional modeling of random heterogeneous media: Application to blood“, in Proceedings, Vancouver, Kanada, 2006, S. 2068–2071. doi: 10.1109/ultsym.2006.528.
[6]
S. Dencks u. a., „Optimization algorithm for improved quantitative ultrasound signal processing at the proximal femur“, in Proceedings, Vancouver, Kanada, 2006, S. 25–28. doi: 10.1109/ultsym.2006.21.
[7]
M. Postema, N. de Jong, und G. Schmitz, „Nonlinear behavior of ultrasound-insonified encapsulated microbubbles“, in Innovations in nonlinear acoustics, Pennsylvania, 2006, Bd. 838, S. 275–278. doi: 10.1063/1.2210361.
[8]
M. Postema und G. Schmitz, „Modellierung physikalischer Eigenschaften von Kontrastmitteln“, in Fortschritte der Akustik, Braunschweig, 2006, S. 37–38.
[9]
G. Schmitz, „Ultraschalltechnik in der funktionellen und zellbiologischen Bildgebung“, in Innovations for Europe, Aachen, 2006, Bd. 2006, S. 423–428.
[10]
M. Postema, M. Mleczko, und G. Schmitz, „Contrast microbubble clustering at high MI“, in Proceedings, Vancouver, Kanada, 2006, S. 1564–1567. doi: 10.1109/ultsym.2006.397.
[11]
M. Postema und G. Schmitz, „Bubble dynamics involved in ultrasonic imaging“, Expert review of molecular diagnostics, Bd. 6, Nr. 3, S. 493–502, 2006, doi: 10.1586/14737159.6.3.493.
[12]
M. Postema, A. Bouakaz, F. J. ten Cate, G. Schmitz, N. de Jong, und A. van Wamel, „Nitric oxide delivery by ultrasonic cracking: some limitations“, Ultrasonics, Bd. 44, Nr. S 1, S. e109–e113, 2006, doi: 10.1016/j.ultras.2006.06.003.
[13]
M. Postema, M. Mleczko, und G. Schmitz, „Experimental setup for synchronous optical and acoustical observation of contrast microbubbles“, Biomedical engineering, Bd. 51, Nr. Suppl., S. V751-1-V751-2, 2006.
[14]
M. Mienkina, S. Hold, und G. Schmitz, „Simulation der Ultraschallrückstreuung von Blut basierend auf der Modellierung dreidimensionaler stochastischer Medien“, Biomedical engineering, Bd. 51, Nr. Suppl., S. V183-1-V183-2, 2006.
[15]
M. Mienkina u. a., „Experimental characterization of ferucarbotran (Resovist ®) as a photoacoustic nanoparticle contrast agent“, in Proceedings, Vancouver, Kanada, 2006, S. 393–396. doi: 10.1109/ultsym.2006.111.
[16]
M. Postema, M. Mleczko, G. Schmitz, Ieee, und G. Schmitz, „Contrast microbubble clustering at high MI“, in 2006 Ieee Ultrasonics Symposium, Vols 1-5, Proceedings, 2006. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000260407801004&KeyUID=WOS:000260407801004
[17]
M. P. Mienkina u. a., „Experimental Characterization of Ferucarbotran (Resovist (R)) as a Photoacoustic Nanoparticle Contrast Agent“, in 2006 Ieee Ultrasonics Symposium, Vols 1-5, Proceedings, 2006. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000260407800094&KeyUID=WOS:000260407800094
[18]
M. P. Mienkina, S. Hold, G. Schmitz, Ieee, und G. Schmitz, „Generalized Simulation of Ultrasonic Backscattering Based on Three-dimensional Modeling of Random Heterogeneous Media: Application to Blood“, in 2006 Ieee Ultrasonics Symposium, Vols 1-5, Proceedings, 2006. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000260407801129&KeyUID=WOS:000260407801129
[19]
M. Mleczko, M. Postema, G. Schmitz, Ieee, und G. Schmitz, „Identifying Nonlinear Characteristics for the Bulk Response of Ultrasound Contrast Agents“, in 2006 Ieee Ultrasonics Symposium, Vols 1-5, Proceedings, 2006. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000260407800328&KeyUID=WOS:000260407800328
[20]
K. M. Hiltawsky, C. Haisch, M. P. Mienkina, M. Postema, G. Schmitz, und G. Schmitz, „Optoakustik in der medizinischen Bildgebung“, in Molecular Imaging, 2006.
[21]
M. Postema, K. M. Hiltawsky, G. Schmitz, und G. Schmitz, „Ultraschallkontrastmittel - Grundlegende Überlegungen“, in Molecular Imaging, 2006.

2005

[1]
M. Postema und G. Schmitz, „Ultrasonic fragmentation of microbubbles: a theoretical approach of the flash in flash-echo“, in Innovation from biomolecules to biosystems, Shanghai, 2005, Bd. 27, S. 4023–4026. doi: 10.1109/iembs.2005.1615344.
[2]
M. Postema, N. de Jong, und G. Schmitz, „Shell rupture threshold, fragmentation threshold, Blake threshold“, in 2005 IEEE Ultrasonics Symposium, Rotterdam, 2005, S. 1708–1711. doi: 10.1109/ultsym.2005.1603194.
[3]
T. M. Buzug, D. Holz, M. Kohl-Bareis, und G. Schmitz, „Non-Standard medical imaging modalities“, in Aktuelle Methoden der Laser- und Medizinphysik, Remagen, 2005, S. 22–27.
[4]
M. Postema, N. de Jong, G. Schmitz, und A. van Wamel, „Creating antibubbles with ultrasound“, in 2005 IEEE Ultrasonics Symposium, Rotterdam, 2005, S. 977–980. doi: 10.1109/ultsym.2005.1603013.
[5]
M. Mienkina, C. Hansen, und G. Schmitz, „An MRI contrast agent for ultrasonic imaging?: a backscattering simulation“, Ultraschall in der Medizin, Bd. 26, Nr. S1, S. 33, 2005, doi: 10.1055/s-2005-917371.
[6]
M. Buigas, F. de Montero Espinosa, G. Schmitz, I. Ameijeiras, P. Masegosa, und M. Domínguez Pumar, „Electro-acoustical characterization procedure for cMUTs“, Ultrasonics, Bd. 43, Nr. 5, S. 383–390, 2005, doi: 10.1016/j.ultras.2004.07.006.
[7]
M. Postema, N. de Jong, und G. Schmitz, „The physics of nanoshelled microbubbles“, Biomedical engineering, Bd. 50, Nr. S 1,1, S. 748–749, 2005.
[8]
S. K. Chaudhry, M. Postema, W. A. M. Khaled, und G. Schmitz, „Accelerated block-based 2D motion estimation for preprocessing in elastography“, Biomedical engineering, Bd. 50, Nr. S1, S. 637–638, 2005.
[9]
M. Mienkina, M. Kaus, F. Hoffmann, und G. Schmitz, „Model based 3D segmentation of CT data sets using classification maps“, Biomedical engineering, Bd. 50, Nr. S1, S. 419–420, 2005.
[10]
M. Mienkina, M. Postema, C. Hansen, und G. Schmitz, „Modelling ultrasonic backscatter of an SPIO-MRI contrast agent“, Biomedical engineering, Bd. 50, Nr. S1, S. 750–751, 2005.
[11]
M. Postema, N. de Jong, G. Schmitz, und G. Schmitz, „Nonlinear behavior of ultrasound-insonified encapsulated microbubbles“, in Innovations in Nonlinear Acoustics, 2005.
[12]
M. Postema, A. van Wamel, G. Schmitz, N. de Jong, und G. Schmitz, „Slingerende belletjes, gerichte medicijnbezorging en microïnjectienaalden“, Klinische Fysica, 2005, Publiziert.

2004

[1]
T. M. Buzug, D. Holz, M. Kohl-Bareis, und G. Schmitz, „Frontiers in medical imaging“, in Innovationen für Menschen, Berlin, 2004, Bd. 2004, S. 37–42.
[2]
T. M. Buzug u. a., „Acoustical navigation of laser interventions in implantology“, in CARS 2004, Chicago, 2004, 1. edition., Bd. 1268, S. 1384. doi: 10.1016/j.ics.2004.03.039.
[3]
M. Postema, A. van Wamel, G. Schmitz, und N. De Jong, „Slingerende belletjes, gerichte medicijnbezorging en microïnjectienaalden“, Klinische fysica, Bd. 2004, Nr. 3–4, S. 6–9, 2004.
[4]
S. Zwick, Ch. Günther, M. Hoss, H.-J. Welsch, G. Schmitz, und R. Lemor, „Programmierumgebung einer Ultraschallplattform - Schnittstelle zwischen Beamforming und Simulation“, gehalten auf der Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik, Ilmenau, 2004, Publiziert.
[5]
U. Hartmann u. a., „Robotic and laser aided navigation for dental implants“, in Perspective in image-guided surgery, Remagen, 2004, S. 344. doi: 10.1142/9789812702678_0047.
[6]
G. Schmitz, „Ein tragbares System für die Bewegungsanalyse zur Unterstützung des Kardiologischen Dauermonitoring“, Biomedical engineering, Bd. 49, Nr. s2, S. 252–253, 2004.
[7]
G. Schmitz, „Characterization of capacitive micromechanical ultrasonic transducers for medical imaging“, Biomedical engineering, Bd. 49, Nr. s2, S. 860–861, 2004.
[8]
G. Schmitz, „Perspektiven der Ultraschalltechnik in Diagnose und Therapie“, Biomedical engineering, Bd. 49, Nr. s2, S. 838–839, 2004.
[9]
G. Schmitz, „Sound and image-guided dental laser intervention“, Biomedical engineering, Bd. 49, Nr. Suppl.2, 2004.

2003

[1]
G. Schmitz, „Improvement of ultrasound compound imaging by speed-of-sound estimation“, in Physikalische Methoden der Laser- und Medizintechnik, Remagen, 2003, Als Manuskript gedruckt., Bd. 231, S. 24–30.
[2]
G. Schmitz, „Mikromechanische Ultraschallwandler für die medizinische Diagnostik“, in Fortschritte der Akustik, Aachen, 2003, S. 814–815.

2002

[1]
J. D. Fraser, M. K. Klee, und G. Schmitz, „Ultrasonic membrane transducer for an ultrasonic diagnostic probe“, 13749102
[2]
T. Aach, C. Mayntz, P. M. J. Rongen, G. Schmitz, und H. Stegehuis, „Spatiotemporal multiscale vessel enhancement for coronary angiograms“, in Medical imaging 2002, San Diego, Calif., 2002, Bd. 4684, S. 1010–1021. doi: 10.1117/12.467056.
[3]
G. Schmitz, „Ultrasound in medical diagnosis“, in Scattering, E. R. Pike und P. C. Sabatier, Hrsg. San Diego: Acad.emic Pr., 2002, S. 162–174. doi: 10.1016/b978-012613760-6/50010-3.
[4]
G. Schmitz, „Estimation of Speed-of-Sound for the correction of compound imaging“, in Fortschritte der Akustik, Bochum, 2002, 1. Aufl., S. 681–682.
[5]
H. Braess, H. Reiter, und G. Schmitz, „System and method with automatically optimized imaging“, 32441602
[6]
T. Aach, P. M. J. Rongen, G. Schmitz, und H. Stegehuis, „Apparatus and method for processing of digital images“, 21569202
[7]
H. Braess, H. Reiter, und G. Schmitz, „Device and method for adapting the radiation dose of an X-ray source“, 10/160,310
[8]
H. Braess, H. Reiter, und G. Schmitz, „Method and device for the processing of X-ray images“, 8475802
[9]
O. Dannappel, J. Fraser, M. Klee, H.-P. Loebl, T. Schlenker, und G. Schmitz, „Array of ultrasound transducers“, 30659902
[10]
G. Schmitz und G. Schmitz, „Ultrasound in Medical Diagnosis“, in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, 2002.

2001

[1]
D. Olaf, J. Fraser, K. Mareike, H.-P. Loebl, T. Schlenker, und G. Schmitz, „Array of ultrasound transducers“, 76856401
[2]
C. Mayntz, T. Aach, und G. Schmitz, „Acceleration and evaluation of block-based motion estimation algorithms for x-ray fluoroscopy“, in Medical imaging 2001 - image processing, San Diego, 2001, Bd. 4322, S. 1075–1083. doi: 10.1117/12.430982.
[3]
G. Schmitz, „Fortschritte der endoskopischen Prostatasonographie“, Frequenz, Bd. 55, Nr. 1–2, S. 25–30, 2001.
[4]
K. Eck und G. Schmitz, „Ultrasound system and ultrasound diagnostic apparatus for imaging scatterers in a medium“, 94585901 [Online]. Verfügbar unter: https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20020425&DB=&locale=de_EP&CC=US&NR=2002049381A1&KC=A1&ND=4#
[5]
V. Rasche, J. Sabczynski, G. Schmitz, J. J. Van Vaals, und W. Zylka, „Method of localizing objects in interventional radiology“, 79209701
[6]
G. Schmitz und G. Schmitz, „Advances in endoscopical ultrasound of the prostate“, Frequenz, 2001, Publiziert, [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000167768800006&KeyUID=WOS:000167768800006

2000

[1]
C. Mayntz, J.-M. Frahm, T. Aach, und G. Schmitz, „Beschleunigung und Bewertung blockbasierter Bewegungsschätzmethoden für die Röntgenfluoroskopie“, in Mustererkennung 2000, Kiel, 2000, S. 123–130. doi: 10.1007/978-3-642-59802-9_16.
[2]
G. Schmitz, „X-ray examination apparatus“, 74197500

1999

[1]
G. Schmitz, H. Ermert, und T. Senge, „Tissue-characterization of the prostate using radio frequency ultrasonic signals“, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Bd. 46, Nr. 1, S. 126–138, 1999, doi: 10.1109/58.741523.
[2]
W. Zylka, J. Sabczynski, und G. Schmitz, „A Gaussian approach for the calculation of the accuracy of stereotactic frame systems“, Medical physics, Bd. 26, Nr. 3, S. 381–391, 1999, doi: 10.1118/1.598529.
[3]
G. Schmitz, „Ultraschall-Biomikroskopie“, in Ultraschall und magnetische Resonanz, Pichl bei Wels, 1999, S. 92–95.
[4]
G. Schmitz, „Ultraschall-Spektroskopie“, in Ultraschall und magnetische Resonanz, Pichl bei Wels, 1999, S. 84–87.
[5]
G. Schmitz, „Ultraschall-Artefakte“, in Ultraschall und magnetische Resonanz, Pichl bei Wels, 1999, S. 88–91.
[6]
G. Schmitz und G. Schmitz, „Ultraschall-Artefakte“, in Ultraschall und Magnetische Resonanz, 1999.
[7]
G. Schmitz und G. Schmitz, „Ultraschall-Biomikroskopie“, in Ultraschall und Magnetische Resonanz, 1999.
[8]
G. Schmitz und G. Schmitz, „Ultraschallspektroskopie“, in Ultraschall und Magnetische Resonanz, 1999.

1998

[1]
M. Breeuwer u. a., „The EASI project-improving the effectiveness and quality of image-guided surgery“, IEEE transactions on information technology in biomedicine / Institute of Electrical and Electronics Engineer, Bd. 2, Nr. 3, S. 156–168, 1998, doi: 10.1109/4233.735780.
[2]
M. Breeuwer, H. L. T. de Bliek, B. Johannes, und G. Schmitz, „Progress in the European Applications in Surgical Interventions (EASI) project“, in Computer assisted radiology and surgery, Tokio, 1998, S. 627–634.
[3]
J. Sabczynski und G. Schmitz, „Method of and device for position detection in X-ray imaging“, 1471498
[4]
M. Breeuwer u. a., „Progress in the European Applications in Surgical Interventions (EASI) project“, in Car ’98 - Computer Assisted Radiology and Surgery, 1998. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000075083300110&KeyUID=WOS:000075083300110

1997

[1]
W. Zylka, J. Sabczynski, und G. Schmitz, „Calculation of the application accuracy of stereotactic frame systems“, in CAR ’97 - computer assisted radiology and surgery, Berlin, 1997, Bd. 1134, S. 866–871.
[2]
W. Zylka, J. Sabczynski, und G. Schmitz, „The geometrical accuracy of volumetric CT images“, in Proceedings of the First North American Program on Computer Assisted Orthopedic Surgery, CAOS/USA’97, 1997, Publiziert.
[3]
M. Seesselberg, J. Tiaden, G. Schmitz, und I. Steinbach, „Gefügesimulation in mehrphasig erstarrenden Legierungen“, Metall, Bd. 51, Nr. 9, S. 491–493, 1997.
[4]
W. Zylka, J. Sabczynski, G. Schmitz, und G. Schmitz, „Calculation of the application accuracy of stereotactic frame systems“, in Car ’97 - Computer Assisted Radiology and Surgery, 1997. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000070984600145&KeyUID=WOS:000070984600145

1996

[1]
I. Steinbach u. a., „A phase field concept for multiphase systems“, Physica. D, Nonlinear phenomena  D, Bd. 94, Nr. 3, S. 135–147, 1996, doi: 10.1016/0167-2789(95)00298-7.
[2]
M. Fuchs u. a., „Accuracy analysis for image-guided neurosurgery using fiducial skin markers, 3D CT imaging, and an optical localizer system“, in CAR ’96, Computer assisted radiology, 1996, S. 770–775.
[3]
G. Schmitz, H. Ermert, und T. Senge, „Color-coded tissue characterization images of the prostate“, in Proceedings of the 22nd International Symposium on Acoustical Imaging, Florenz, 1996, Bd. 22, S. 359–364.
[4]
G. Schmitz, H. Ermert, und T. Senge, „Selbstorganisierende, neuronale Netze zur Ultraschall-Gewebecharakterisierung der Prostata“, Ultraschall in der Medizin, Bd. 17, Nr. S, S. 38, 1996.
[5]
G. Schmitz, Verfahren zur Ultraschall-Gewebscharakterisierung der Prostata. Düsseldorf: VDI-Verlag, 1996.
[6]
M. Seesselberg, B. Nestler, R. Prieler, G. Schmitz, und I. Steinbach, „Ein ortsaufgelöstes Simulationsverfahren der Gefügebildung in erstarrenden Schmelzen“, Metall, Bd. 50, Nr. 9, S. 588–590, 1996.
[7]
M. Fuchs u. a., „Accuracy analysis for image-guided neurosurgery using fiducial skin markers, 3D CT imaging, and an optical localizer system“, in Car ’96: Computer Assisted Radiology, 1996. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:A1996BG22F00134&KeyUID=WOS:A1996BG22F00134
[8]
G. Schmitz, H. Ermert, T. Senge, und G. Schmitz, „Color-coded tissue characterization images of the prostate“, in Acoustical Imaging, Vol 22, 1996. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:A1996BF85N00058&KeyUID=WOS:A1996BF85N00058
[9]
G. Schmitz und G. Schmitz, Ein Verfahren zur Ultraschall-Gewebscharakterisierung der Prostata. 1996.

1995

[1]
G. Schmitz und H. Ermert, „Color-coded tissue characterization imaging of prostate using different classifiers“, Ultrasonic imaging, Bd. 17, S. 55, 1995.

1994

[1]
G. Schmitz, H. Ermert, und T. Senge, „Tissue characterization of the prostate using kohonen-maps“, in Proceedings, Cannes, 1994, S. 1487–1490. doi: 10.1109/ultsym.1994.401872.
[2]
G. Schmitz, H. Ermert, und T. Senge, „Ultraschall-Gewebscharakterisierung der Prostata mit Kohonen-Maps“, Biomedical engineering, Bd. 39, Nr. S1, S. 36–37, 1994, doi: 10.1515/bmte.1994.39.s1.36.

1993

[1]
G. Schmitz, M. Krüger, und H. Ermert, „Comparison of a neural network and a K-nearest neighbor classifier for the classification of different scatterer densities“, Ultrasonic imaging, Bd. 15, S. 168, 1993.

1990

[1]
D. Kraus, G. Schmitz, und J. F. Böhme, „Least squares estimates for source locations and asymptotic behaviours“, in Signal processing V, Barcelona, 1990, S. 649–652.
[2]
D. Kraus, G. Schmitz, J. F. Bohme, und G. Schmitz, LEAST-SQUARES ESTIMATES FOR SOURCE LOCATION AND ASYMPTOTIC BEHAVIORS. 1990. [Online]. Verfügbar unter: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:A1990BU04A00148&KeyUID=WOS:A1990BU04A00148

Nach oben

To Top