M. Sc. Zahra Ebrahimi

Zahra obtained her B.Sc. and M.Sc. degrees from Sharif University of Technology in Iran, where she also worked as a researcher in DSN lab. From 2018 to 2024, she worked in Cfaed, TU Dresden (where she also is a PhD student) on the following projects:

  • ReAp: Run-time Reconfigurable Approximate Architecture, DFG grant, 2018-2021.
  • Re-Learning: Self-Learning and Flexible Electronics Through Inherent Component Reconfiguration, ESF grant, 2021-2023.
  • X-ReAp: Cross(X)-Layer Runtime Reconfigurable Approximate Architecture, DFG grant, 2023-2025.

Zahra is also the manager of her own BMBF-granted X-DNet project (collaboration with Huawei), and acatech/BMDV-granted GREEN-DNN project. Zahra's research interests include approximate computing, reconfigurable accelerator design, in-network computing for 5G/6G, energy-efficiency/sustainability in edge to cloud continuum, SW/HW co-design, and embedded systems. 

Linkedin, Google Scholar

Raum: ID 2/645,  E-Mail: zahra.ebrahimi[at]rub.de

Topics for thesis, master project, SHK/WHK, internship

- Approximation of Machine Learning Models for High-Throughput, Energy-Efficient, and Sustainable Computing in 5G/6G Era

To improve the energy consumption and/or the response time of ML applications, various computing approaches have emerged in the era of 5G/6G. These approaches include Federated Learning, Distributed Inference, In-Network Computing, etc. However, to enable the execution of many cutting-edge and compute-intensive models (e.g., LLMs and DNNs) for the resource-constrained devices in the edge-to-cloud continuum, the structure of such models should be optimized without compromising the final quality of results. In this context, Approximate Computing techniques have been shown to provide highly beneficial solutions by exploiting the inherent error resiliency of ML models. Considering such potentials, the main idea in this project is to find and apply a combination of suitable approximation techniques that can reduce the area/power/energy of ML models and boost their performance while satisfying the accuracy requirement of the users.

Required Skills: 

  • FPGA development and programming: Verilog or VHDL, C++, and Python
  • High-Level Synthesis: Vivado and Vitis HLS
  • ML: Tensorflow and/or PyTorch, experince in optimizing the structure of medium to large ML modes

2025

[1]
Z. Ebrahimi, M. Eslami, X. Xiao, A. Kumar, und Z. Ebrahimi, „X-DINC: Toward Cross-Layer ApproXimation for theDistributed and In-Network ACceleration of Multi-Kernel Applications“, Future Generation Computer Systems, Mai 2025, Publiziert, doi: 10.1016/j.future.2025.107864.

2024

[1]
Z. Ebrahimi und A. Kumar, „GREEN: an approximate SIMD/MIMD CGRA for energy-efficient processing at the edge“, IEEE transactions on computer-aided design of integrated circuits and systems / Institute of Electrical and Electronics Engineers, Bd. 43, Nr. 10, Art. Nr. 10488043, Apr. 2024, doi: 10.1109/tcad.2024.3383349.

2023

[1]
Z. Ebrahimi, M. Zaid, M. Wijtvliet, und A. Kumar, „RAPID: approximate pipelined soft multipliers and dividers for high throughput and energy efficiency“, IEEE transactions on computer-aided design of integrated circuits and systems / Institute of Electrical and Electronics Engineers, Bd. 42, Nr. 3, S. 712–725, 2023, doi: 10.1109/tcad.2022.3184928.

2022

[1]
Z. Ebrahimi, D. Klar, M. A. Ekhtiyar, und A. Kumar, „Plasticine: a cross-layer approximation methodology for multi-kernel applications through minimally biased, high-throughput, and energy-efficient SIMD soft multiplier-divider“, ACM transactions on design automation of electronic systems, Bd. 27, Nr. 2, Art. Nr. 16, 2022, doi: 10.1145/3486616.

2021

[1]
Z. Ebrahimi und A. Kumar, „BioCare: an energy-efficient CGRA for bio-signal processing at the edge“, in „Smart technology for an intelligent society“, Online, Apr. 2021, Publiziert. doi: 10.1109/iscas51556.2021.9401461.

2020

[1]
Z. Ebrahimi, S. Ullah, und A. Kumar, „LeAp: leading-one detection-based softcore approximate multipliers with tunable accuracy“, in 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Peking, März 2020, S. 605–610. doi: 10.1109/asp-dac47756.2020.9045171.
[2]
Z. Ebrahimi, S. Ullah, und A. Kumar, „SIMDive: approximate SIMD soft multiplier-divider for FPGAs with tunable accuracy“, in Proceedings of the 2020 on Great Lakes Symposium on VLSI, online, Sep. 2020, S. 151–156. doi: 10.1145/3386263.3406907.

2019

[1]
S. Tamimi, Z. Ebrahimi, B. Khaleghi, und H. Asadi, „An efficient SRAM-based reconfigurable architecture for embedded processors“, IEEE transactions on computer-aided design of integrated circuits and systems / Institute of Electrical and Electronics Engineers, Bd. 38, Nr. 3, S. 466–479, 2019, doi: 10.1109/tcad.2018.2812118.
[2]
Z. Ebrahimi, „Table of contents“, IEEE transactions on computer-aided design of integrated circuits and systems / Institute of Electrical and Electronics Engineers, Bd. 38, Nr. 3, S. C1–C4, Feb. 2019, doi: 10.1109/tcad.2019.2895196.

2018

[1]
Z. Seifoori, Z. Ebrahimi, B. Khaleghi, und H. Asadi, „Introduction to emerging SRAM-based FPGA architectures in dark Silicon era“, in Dark Silicon and Future on-Chip Systems, Bd. 110, A. R. Hurson und H. Sarbazi-Azad, Hrsg. San Diego: Elsevier Science & Technology, 2018, S. 259–294. doi: 10.1016/bs.adcom.2018.04.002.

2017

[1]
Z. Ebrahimi, B. Khaleghi, und H. Asadi, „PEAF: a power-efficient architecture for SRAM-based FPGAs using reconfigurable hard logic design in dark Silicon era“, IEEE transactions on computers / Institute of Electrical and Electronics Engineers, Bd. 66, Nr. 6, S. 982–995, 2017, doi: 10.1109/tc.2016.2636141.

2014

[1]
A. Ahari, B. Khaleghi, Z. Ebrahimi, H. Asadi, und M. B. Tahoori, „Towards dark silicon era in FPGAs using complementary hard logic design“, in 2014 24th International conference on field programmable logic and applications (FPL), 2014, München, Okt. 2014, Publiziert. doi: 10.1109/fpl.2014.6927504.

Nach oben

Postanschrift

Ruhr-Universität Bochum
Fakultät für Elektrotechnik und Informationstechnik
Eingebettete Systeme
Postfach ID 29
Universitätsstraße 150
D-44801 Bochum

Kontakt

Sekretariat

Raum: ID 2/607
Telefon: (+49) (0) 234 32 - 17542
E-Mail: sekretariat-es@rub.de
RUB Lageplan & Anreise 

Professor

Prof. Dr. Akash Kumar
Raum: ID 2/609
Telefon: (+49) (0) 234 32 - 15677
E-Mail: akash.kumar(at)rub.de

To Top