Dr.-Ing. Christoph Baer

Akademischer Oberrat

Electronic Circuits

Address:
Ruhr-Uni­ver­si­ty Bo­chum
Faculty of Electrical Engineering and Informationtechnology
Electronic Circuits
Postbox ID 37
Uni­ver­si­täts­stra­ße 150
D-44801 Bo­chum

Room:
ID 03/324

Phone:
(+49)(0)234 / 32 - 27606

Fax:
(+49)(0)234 / 32 - 14168

E-Mail:
christoph.baer@est.rub.​de

Website:
www.etit.ruhr-uni-bochum.de/est

2025

[1]
N. Kazamer u. a., „Ultrasonically deposited boron-doped silicon decorated with laser-generated iridium nanoparticles as manufacturing approach for OER electrodes in PEM water electrolysis“, Advanced materials interfaces, Bd. 12, Nr. 1, Art. Nr. 2400765, Jan. 2025, doi: 10.1002/admi.202400765.
[2]
J. Mertin, L. Vogel, F. Beckfeld, J. Diele, T. Musch, und C. Baer, „The Clochard Alert: A Student-Developed Alarm System for Those Who Are Homeless“, in 2024 IEEE International Humanitarian Technologies Conference (IHTC), Bari, Jan. 2025, Publiziert. doi: 10.1109/ihtc61819.2024.10855019.
[3]
K. Dausien, T. Körner, J. Barowski, C. Baer, I. Rolfes, und C. Schulz, „Investigations on a Fluidic THz True Time Delay Based on a Dielectric Slot Waveguide“, in 2024 IEEE 1st Latin American Conference on Antennas and Propagation (LACAP), Cartagena de Indias, Feb. 2025, Publiziert. doi: 10.1109/lacap63752.2024.10876252.
[4]
K. Dausien u. a., „Design and Validation of Enhanced Fixtures for THz Dielectric Waveguide Sensors and Applications“, in 2025 16th German Microwave Conference (GeMiC), Dresden, Mai 2025, Publiziert. doi: 10.23919/gemic64734.2025.10979094.

2024

[1]
J. Schorlemer, J. Altholz, J. Barowski, C. Baer, I. Rolfes, und C. Schulz, „A radar echo simulator for the synthesis of randomized training data sets in the context of AI-based applications“, Sensors, Bd. 24, Nr. 3, Art. Nr. 836, Jan. 2024, doi: 10.3390/s24030836.
[2]
F. Schenkel, T. Schultze, C. Baer, I. Rolfes, und C. Schulz, „Radar-enabled millimeter-wave sensing of fire interactions“, IEEE transactions on instrumentation and measurement / Institute of Electrical and Electronics Engineers, Bd. 73, Art. Nr. 8003810, Mai 2024, doi: 10.1109/tim.2024.3400306.
[3]
F. Schenkel, T. Schultze, C. Baer, I. Rolfes, und C. Schulz, „Radar-Based Smoke Detection at Millimeter Wave Frequencies: an experimental study“, in 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, Washington, Juli 2024, S. 887–890. doi: 10.1109/ims40175.2024.10600292.
[4]
N. Muckermann, C. Baer, und N. Pohl, „Metal Sheet Thickness Measurement using Dielectric Waveguides with Millimeter Wave Radar“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, Okt. 2024, Publiziert. doi: 10.1109/iceaa61917.2024.10701689.
[5]
C. Baer, „A Compensation Method for Reducing the Influence of Printing Voids on the Wave Propagation Properties of FDM-manufactured Dielectric Waveguides“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, Okt. 2024, Publiziert. doi: 10.1109/iceaa61917.2024.10701745.
[6]
K. Dausien u. a., „Investigation on LNN-self-calibration procedures for dielectric waveguide measurements“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, 2024, S. 442–446. doi: 10.1109/iceaa61917.2024.10701676.
[7]
C. Baer und T. Jaeschke, „A mmWave Phase Correlation Based Gas Velocity Sensor Utilizing Time Domain Multiplexed Fixed Target Radar Measurements“, in 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lissabon, Okt. 2024, Publiziert. doi: 10.1109/iceaa61917.2024.10701835.
[8]
R. Schmitz, J. Schorlemer, J. Altholz, C. Baer, C. Schulz, und I. Ralfes, „Generative adversarial networks for augmentation of simulation scenarios in ground penetrating radar based demining“, in 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), Sidney, 2024, Publiziert. doi: 10.1109/icecet61485.2024.10698343.
[9]
F. Schenkel, T. Schultze, C. Baer, J. C. Balzer, I. Rolfes, und C. Schulz, „Smoke Detection and Combustion Analysis Using Millimeter-Wave Radar Measurements“, IEEE transactions on microwave theory and techniques, Bd. 2024, Art. Nr. 10738843, Okt. 2024, doi: 10.1109/tmtt.2024.3479218.

2023

[1]
R. Schmitz, B. Hattenhorst, C. Baer, T. Musch, und I. Rolfes, „Machine learning based surrogate modeling for wave impedances in rectangular dielectric waveguides“, in 2023 IEEE/MTT-S International Microwave Symposium (IMS 2023), San Diego, Juli 2023, S. 85–88. doi: 10.1109/ims37964.2023.10188047.
[2]
F. Schenkel, C. Baer, I. Rolfes, und C. Schulz, „Plasma state supervision utilizing millimeter wave radar systems“, International journal of microwave and wireless technologies, Bd. 15, Nr. 6, S. 1001–1011, März 2023, doi: 10.1017/s175907872200143x.
[3]
C. Baer, „A line length independent, pseudo-transmission permittivity sensor basing on dielectric waveguides“, IEICE transactions E / C, Bd. E106C, Nr. 11, S. 689–697, Mai 2023, doi: 10.1587/transele.2023mmp0002.
[4]
F. Schenkel, C. Baer, I. Rolfes, und C. Schulz, „Flame-millimeter-wave-interactions: a radar-based sensor concept“, in 2023 IEEE Sensors Applications Symposium (SAS), Ottawa, 2023, Publiziert. doi: 10.1109/sas58821.2023.10254144.
[5]
R. Kaesbach, O. Silva, F. Vega, C. Kasmi, T. Musch, und C. Baer, „Broadband, full-duplex transceive amplifier for bi-static, reflectometer-operated radar applications in x-band“, in 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Venedig, Okt. 2023, S. 526–530. doi: 10.1109/iceaa57318.2023.10297872.
[6]
N. Karsch, T. Musch, und C. Baer, „Spectral component analysis for hardware characterization in RF applications“, in 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Venedig, Okt. 2023, S. 200–204. doi: 10.1109/iceaa57318.2023.10297793.
[7]
C. Baer, „Design and evaluation of a dielectric waveguide based fingerprinting and distribution network for mmW-radar Operation“, in 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Venedig, Okt. 2023, S. 39–43. doi: 10.1109/iceaa57318.2023.10297854.
[8]
C. Baer, „On the broadband design of rectangular and quadratic dielectric waveguides for mmWave operation“, in 2023 IEEE USNC-URSI Radio Science Meeting (joint with AP-S Symposium), AP-S/URSI 2023, Portland, OR, Okt. 2023, S. 41–42. doi: 10.23919/usnc-ursi54200.2023.10289633.
[9]
J. Mertin, R. Kaesbach, B. Hattenhorst, T. Musch, und C. Baer, „Comparison of different electromagnetic delay lines for X-band radar target generation“, in 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Venedig, 2023, S. 377–381. doi: 10.1109/iceaa57318.2023.10297726.

2022

[1]
F. Schenkel, C. Schulz, C. Baer, und I. Rolfes, „Plasma state supervision utilizing 140 GHz radar measurements“, gehalten auf der European Microwave Week 2021, London, 2022, Publiziert. [Online]. Verfügbar unter: https://www.eumweek.com/archive/eumweek2021/www.eumw2021.com/docs/2021_programme.pdf
[2]
C. Baer, „Broadband mmWave filters using dielectric waveguide bends“, in 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), online, Feb. 2022, Publiziert. doi: 10.1109/aps/ursi47566.2021.9704283.
[3]
N. Karsch, C. Baer, und T. Musch, „Cognitive FMCW-radar concept for ultrafast spatial mapping using frequency coded channels“, in 2021 18th European Radar Conference (EuRAD), 2022, S. 333–336.
[4]
C. Baer, N. Karsch, R. Kaesbach, und T. Musch, „Enhancing the radar cross-range resolution in ultra-fast radar scans by utilizing frequency coded sub-channels“, Sensors, Bd. 22, Nr. 9, Art. Nr. 3343, Apr. 2022, doi: 10.3390/s22093343.
[5]
C. Baer, „Fault detection of microwave components using direct display field representation microwave thermography“, in 2022 IEEE MTT-S International Microwave Bio Conference (IMBioC), Suzhou  , Juni 2022, S. 16–18. doi: 10.1109/imbioc52515.2022.9790280.
[6]
K. Orend, C. Baer, und T. Musch, „A compact measurement setup for material characterization in W-band based on dielectric waveguides“, Sensors, Bd. 22, Nr. 16, Art. Nr. 5972, Aug. 2022, doi: 10.3390/s22165972.
[7]
C. Baer, „Design and Manufacturing of a Compact and Broadband DWG Transition-Antenna using 3D Printing Techniques“, in 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, Sep. 2022, S. 942–943. doi: 10.1109/ap-s/usnc-ursi47032.2022.9886548.
[8]
N. Karsch, H. Schulte, T. Musch, und C. Baer, „A novel localization system in SAR-demining applications using invariant radar channel fingerprints“, Sensors, Bd. 22, Nr. 22, Art. Nr. 8688, Nov. 2022, doi: 10.3390/s22228688.
[9]
C. Baer und B. Hattenhorst, „Project humanitarian technology - a novel project based, inverted classroom approach in engineering education“, in 2022 IEEE German Education Conference (GeCon), Berlin, 2022, Publiziert. doi: 10.1109/gecon55699.2022.9942768.
[10]
F. Schenkel, C. Baer, I. Rolfes, und C. Schulz, „Contact-free plasma state supervision utilizing a modified industrial 25 GHz FMCW radar system“, in 2022 Asia-Pacific Microwave Conference proceedings, Yokohama, 2022, S. 937–939. doi: 10.23919/apmc55665.2022.9999880.
[11]
C. Baer, „A highly accurate pseudo-transmission permittivity sensor basing on rectangular dielectric waveguides“, in 2022 Asia-Pacific Microwave Conference proceedings, Yokohama, 2022, S. 109–111. doi: 10.23919/apmc55665.2022.9999753.
[12]
J. Schorlemer, J. Altholz, C. Baer, I. Rolfes, und C. Schulz, „A statistical FDFD simulator for the generation of labeled training data sets in the context of humanitarian demining using GPR“, in 2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Limoges, 2022, Publiziert. doi: 10.1109/nemo51452.2022.10038521.
[13]
F. Schenkel, C. Schulz, C. Baer, und I. Rolfes, „Plasma state supervision utilizing 140 GHz radar measurements“, in 2021 18th European Radar Conference (EuRAD), Juni 2022, S. 25–28. doi: 10.23919/eurad50154.2022.9784522.
[14]
C. Baer, „Design of a dielectric waveguide sensor for pseudo-transmission measurements“, in GlobalEM 2022 , Abu Dhabi, 2022, Publiziert. [Online]. Verfügbar unter: https://www.globalem2022.com/assets/images/papers/31.pdf

2021

[1]
K. Orend, C. Baer, F. Novelli, D. Welzel, T. Musch, und M. Havenith, „Designing a dielectric RF applicator cell for terahertz transmission“, in 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA 2021), Honolulu, Hawaii, 2021, S. 177–182. doi: 10.1109/iceaa52647.2021.9539564.
[2]
C. Baer, K. Orend, B. Hattenhorst, und T. Musch, „Field representation microwave thermography utilizing lossy microwave design materials“, Sensors, Bd. 21, Nr. 14, Art. Nr. 4830, Juli 2021, doi: 10.3390/s21144830.
[3]
S. Gutierrez u. a., „Advances on the detection of landmines and IEDs in Colombia using UWB GPR and machine learning techniques“, in EuCAP 2021, Online, 2021, Publiziert. doi: 10.23919/eucap51087.2021.9411214.
[4]
C. Baer, K. Orend, B. Hattenhorst, und T. Musch, „Mode pattern investigation using field illustration microwave thermography“, in 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA 2021), Honolulu, Hawaii, 2021, S. 2–7. doi: 10.1109/iceaa52647.2021.9539692.
[5]
C. Baer, J. Fernandez, und T. Musch, „A dielectric waveguide based signal distribution network for time multiplexed fixed target radar measurements“, in 2021 18th European Radar Conference (EuRAD), 2021, S. 50–53. doi: 10.23919/eurad50154.2022.9784508.

2020

[1]
C. Baer, „On the applicability of TRL calibration for dielectric waveguide based 2-port-1-port systems“, in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Online, 2020, S. 1625–1672. doi: 10.1109/ieeeconf35879.2020.9330354.
[2]
F. Albarracin-Vargas, F. Vega, C. Kasmi, F. AlYafei, und C. Baer, „Dual graded index dielectric lens system for hyperthermia“, in 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rom, 2020, Publiziert. doi: 10.23919/ursigass49373.2020.9232223.
[3]
B. Hattenhorst, S. M. Schnurre, T. Hülser, C. Baer, und T. Musch, „Contactless flame reactor state parameter investigation using a broadband mmwave radar“, IEEE sensors letters / Institute of Electrical and Electronics Engineers, Bd. 4, Nr. 5, Art. Nr. 3500504, 2020, doi: 10.1109/lsens.2020.2983616.
[4]
J. J. Pantoja, S. Gutierrez, E. Pineda, D. Martinez, C. Baer, und F. Vega, „Modeling and measurement of complex permittivity of soils in UHF“, IEEE geoscience and remote sensing letters / Institute of Electrical and Electronics Engineers, Bd. 17, Nr. 7, S. 1109–1113, 2020, doi: 10.1109/lgrs.2019.2942181.
[5]
C. Baer, „MEDICI - Humanitarian Microwave Detection of Improvised Explosive Devices in Colombia“, gehalten auf der Scientific Workshop on Colombian-German Cooperation, Online, 28. Oktober 2020, Publiziert.
[6]
C. Baer, „Project MEDICI: Humanitarian Microwave Detection of Improvised Explosive Devices in Colombia“, gehalten auf der Conference on Humanitarian Mine Action: Innovations and Strategies in Humanitarian Mine Action, Berlin (online), 22. September 2020, Publiziert.

2019

[1]
N. Surkamp u. a., „Mode-locked diode lasers for THz asynchronous optical sampling“, in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XII, San Francisco, 2019, Bd. 10917. doi: 10.1117/12.2508396.
[2]
M. van Delden, N. Pohl, K. Aufinger, C. Baer, und T. Musch, „A low-noise transmission-type yttrium iron garnet tuned oscillator based on a SiGe MMIC and bond-coupling operating up to 48 GHz“, IEEE transactions on microwave theory and techniques, Bd. 67, Nr. 10, S. 3973–3982, 2019, doi: 10.1109/tmtt.2019.2926293.
[3]
C. Schulz, C. Baer, und M. Fiebrandt, „Millimeter wave radar-based plasma measurements“, in Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapur, 2019, S. 756–758. doi: 10.1109/apmc46564.2019.9038885.
[4]
B. Hattenhorst, C. Baer, und T. Musch, „Enhanced radar phase measurements by means of highly dispersive waveguides“, in Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapur, 2019, S. 750–752. doi: 10.1109/apmc46564.2019.9038753.
[5]
C. Baer, „A reflectometer based sensor system for acquiring full S-parameter sets utilizing dielectric waveguides“, in Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapur, 2019, S. 741–743. doi: 10.1109/apmc46564.2019.9038627.
[6]
S. Gutierrez, F. Vega, F. A. González, C. Baer, und J. Sachs, „Application of polarimetric features and support vector machines for classification of improvised explosive devices“, IEEE antennas and wireless propagation letters / Institute of Electrical and Electronics Engineers, Bd. 18, Nr. 11, S. 2282–2286, 2019, doi: 10.1109/lawp.2019.2934691.
[7]
C. Baer, „Broadband mmWave splitters based on dielectric waveguides“, in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, Ga., 2019, S. 1727–1728. doi: 10.1109/apusncursinrsm.2019.8888781.
[8]
B. Hattenhorst, C. Baer, C. Schulz, und T. Musch, „Inline millimeter wave radar phase measurements utilizing high order waveguide modes“, in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, Ga., 2019, S. 1733–1734. doi: 10.1109/apusncursinrsm.2019.8888318.
[9]
F. Albarracin-Vargas, F. Vega-Stavro, C. Baer, K. Orend, und T. Musch, „Design considerations in a graded index flat dielectric lens for an impulse radiating antenna“, in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, Ga., 2019, S. 855–856. doi: 10.1109/apusncursinrsm.2019.8889342.
[10]
N. Surkamp u. a., „Hybrid mode-locking of diode lasers for asynchronous optical sampling of terahertz waves“, in French-German THz Conference FGTC, Kaiserslautern, 2019, Publiziert.
[11]
C. Baer, „Humanitarian Microwave Detection of Improvised Explosive Devices in Colombia: recent recults and future challenges“, gehalten auf der IEEE Radio and Antenna Days of Indian Ocean, La Réunion, 23. September 2019, Publiziert.
[12]
C. Baer, „Humanitarian microwave detection of improvised explosive devices in Colombia: recent results and future challenges“, gehalten auf der IEEE AP-S International Workshop Advanced Technologies for Detection of Landmines and Improvised Explosive Devices, Bogotá, 2. September 2019, Publiziert.
[13]
C. Baer, „Herausforderungen und Möglichkeiten der MMW-Messtechnik“, gehalten auf der Workshop "Millimeterwellen - Stand der Forschung, Zürich, 18. Juni 2019, Publiziert.
[14]
C. Baer, „Vorrichtung und Verfahren zur Bestimmung von Materialeigenschaften einer Probe mittels eines Eintormessgeräts“, 10. September 2020 [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102019117609B3&xxxfull=1
[15]
N. Surkamp u. a., „Hybrid mode-locking of diode lasers for asynchronous optical sampling of terahertz waves“, gehalten auf der French-German THz Conference (FGTC), Kaiserslautern, 2019, Publiziert.
[16]
C. Baer, „Vorrichtung und Verfahren zur Bestimmung von Materialeigenschaften einer Probe mittels eines Eintormessgeräts“, 102019117609, 10. September 2020 [Online]. Verfügbar unter: https://worldwide.espacenet.com/patent/search/family/072147108/publication/DE102019117609B3?q=DE102019117609B3
[17]
C. Baer, „A refiectometer based sensor system for acquiring full S-parameter sets utilizing dielectric waveguides“, in Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapur, 2019, Publiziert. doi: 10.1109/apmc46564.2019.9038627.

2018

[1]
C. Schulz und C. Baer, „Tunable target design for a dielectric-waveguide-based radar target generator“, in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA 2018), Cartagena de Indias, 2018, S. 392–395. doi: 10.1109/iceaa.2018.8520413.
[2]
C. Baer u. a., „Humanitarian microwave detection of improvised explosive devices in Colombia“, in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA 2018), Cartagena de Indias, 2018, S. 372–375. doi: 10.1109/iceaa.2018.8520508.
[3]
B. Hattenhorst, C. Baer, und T. Musch, „Sensitivity evaluation for reflection phase measurements of resonant microwave near-field sensors with artificial transmission lines“, in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA 2018), Cartagena de Indias, 2018, S. 265–268. doi: 10.1109/iceaa.2018.8520409.
[4]
S. Gutierrez, T. Just, J. Sachs, C. Baer, und F. Vega, „Field-deployable system for the measurement of complex permittivity of improvised explosives and lossy dielectric materials“, IEEE sensors journal / Institute of Electrical and Electronics Engineers, Bd. 18, Nr. 16, S. 6706–6714, Juni 2018, doi: 10.1109/jsen.2018.2849322.
[5]
C. Baer, „Path-loss compensation and target design for dielectric waveguide based radar target generators“, in 2018 IEEE Antennas and Propagation Society International Symposium, Boston, Mass., 2018, S. 2289–2290. doi: 10.1109/apusncursinrsm.2018.8608947.
[6]
A. Fhager, C. Baer, und K. Grenier, „The 2017 First IEEE MTT-S International Microwave Bio Conference“, IEEE microwave magazine for the microwave & wireless engineer, Bd. 19, Nr. 1, S. 124–127, 2018, doi: 10.1109/mmm.2017.2760618.
[7]
B. Hattenhorst, C. Schulz, C. Baer, und T. Musch, „An equidistantly stepped waveguide TE11-TE01-mode converter for millimeter wave radar applications“, in 2018 Asia-Pacific Microwave Conference (APMC 2018), Kyoto, 2018, S. 117–119. doi: 10.23919/apmc.2018.8617406.
[8]
B. Hattenhorst, C. Baer, und T. Musch, „Reproducibility evaluation of composite dielectric materials based on an error propagation model“, in Proceedings of the 2018 IEEE/MTT-S International Microwave Biomedical Conference, Philadelphia, Pa., 2018, S. 25–27. doi: 10.1109/imbioc.2018.8428909.
[9]
S. Vogt u. a., „A newly developed mm-wave sensor for detecting plaques of arterial vessels“, The thoracic and cardiovascular surgeon, Bd. 66, Nr. 1, S. 91–98, 2018, doi: 10.1055/s-0037-1606318.
[10]
C. Baer, T. Musch, I. Rolfes, und J. Sachs, „The war on landmines“, German research, Bd. 40, Nr. 1, S. 12–15, Mai 2018, doi: 10.1002/germ.201870103.
[11]
C. Baer, „IEEE SIGHT Germany Section: vision, mission, and values of a European organization“, gehalten auf der IEEE Radio and Antenna Days of the Indian Ocean, Mauritius, 15. Oktober 2018, Publiziert.
[12]
C. Baer, „Humanitarian research: a foundation for international collaborations“, gehalten auf der International Conference on Electromagnetics in Advanced Applications, Cartagena, Kolumbien, 13. September 2018, Publiziert.
[13]
C. Baer, „Moderne Radartechnik: das Schweizer Taschenmesser der berührungslosen Messtechnik“, gehalten auf der Jubilarehrung des VDE Rhein-Ruhr, Essen, 2. Mai 2018, Publiziert.
[14]
D. Martinez, F. Vega, C. Baer, J. Sachs, und R. Bustamante, „Cross correlation of radar cross section of Colombian improvised explosives devices“, in AMEREM 2018 , Santa Barbara, 2018, Publiziert. [Online]. Verfügbar unter: https://ece-events.unm.edu/amerem2018/program/data/142.pdf

2017

[1]
C. Baer, S. Gutierrez, J. Altholz, J. Barowski, F. Vega, und I. Rolfes, „Ground penetrating synthetic aperture radar imaging providing soil permittivity estimation“, in 2017 IEEE MTT-S International Microwave Symposium (IMS 2017), Honolulu, Hawaii, 2017, S. 1367–1370. doi: 10.1109/mwsym.2017.8058868.
[2]
J. Altholz, J. Barowski, D. Pohle, C. Baer, und I. Rolfes, „A simulation concept based on the FDFD method for ground penetrating radar used in humanitarian demining“, in 2017 14th European Radar Conference (EURAD 2017), Nürnberg, 2017, S. 37–40. doi: 10.23919/eurad.2017.8249141.
[3]
B. Hattenhorst, C. Baer, T. Musch, T. Jaeschke, und N. Pohl, „Gas flow monitoring in high and low reynolds regimes based on compensated FMCW-radar phase measurements“, Frequenz, Bd. 71, Nr. 3–4, S. 195–205, 2017, doi: 10.1515/freq-2016-0216.
[4]
C. Baer und C. Schulz, „A low cost TLPR target generator basing on a dielectric waveguide concept“, in 2017 14th European Radar Conference (EURAD 2017), Nürnberg, 2017, S. 151–154. doi: 10.23919/eurad.2017.8249169.
[5]
B. Hattenhorst, M. Mallach, C. Baer, T. Musch, J. Barowski, und I. Rolfes, „Dielectric phantom materials for broadband biomedical applications“, in 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC 2017), Göteborg, 2017, Publiziert. doi: 10.1109/imbioc.2017.7965802.
[6]
C. Baer, J. Barowski, und I. Rolfes, „On the usability of low-cost inertial navigation systems for free-hand SAR imaging at GPR-frequencies“, in 2017 IEEE Sensors Applications Symposium (SAS 2017), Glassboro, NJ, 2017, Publiziert. doi: 10.1109/sas.2017.7894094.
[7]
J. Barowski, I. Rolfes, und C. Baer, „Real-time imaging system for millimeter wave synthetic aperture radar sensors“, in 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC 2017), Göteborg, 2017, Publiziert. doi: 10.1109/imbioc.2017.7965769.
[8]
C. Baer, K. Orend, T. Musch, J. Deichmöller, und M. Havenith, „A modified RF-transmission line concept for probe excitation in light-induced magnetic resonance force microscopy“, in 2017 IEEE Asia Pacific Microwave Conference, Kuala Lumpur, 2017, S. 536–539. doi: 10.1109/apmc.2017.8251500.
[9]
J. Altholz, J. Barowski, C. Baer, und I. Rolfes, „Implementierung eines schnellen numerischen GPR-Simulators zur stochastischen Analyse von improvisierten Sprengsätzen in Kolumbien“, in Tagungsprogramm, Zusammenfassung der Beiträge, Kleinheubacher Tagung 2017, 2017, S. 40–41. [Online]. Verfügbar unter: https://www.kh2017.de/KH2017_book_of_abstracts.pdf
[10]
C. Baer, „Radarbasierte Massendurchflussmessung - berührungslose Messung von Massenströmen“, Schüttgut, Bd. 23, Nr. 3, S. 80–84, 2017.
[11]
C. Baer, I. Rolfes, T. Musch, und J. Sachs, „Im Kampf gegen Landminen“, Forschung, Bd. 42, Nr. 1, S. 20–23, Apr. 2017, doi: 10.1002/fors.201790001.
[12]
C. Baer, „MEDICI - humanitarian microwave detection of improvised explosive devices in Colombia“, gehalten auf der Mine Detection Symposium, Basel, 2017, Publiziert.
[13]
C. Baer, „RF-Sensors for advanced applications“, gehalten auf der Colloquium at National University of Singapore, Singapur, 17. November 2017, Publiziert.
[14]
C. Baer, „RF-sensors: a Swiss Army Knife device for contactless metrology“, gehalten auf der Colloquium at Universidad Pontificia Bolivariana, Medellín, 8. August 2017, Publiziert.
[15]
C. Baer, „RF-sensors for advanced applications“, gehalten auf der Workshop on Research Cooperation Germany - Colombia, Bogotá, 2017, Publiziert.
[16]
C. Baer, „MEDICI - humanitarian microwave detection of improvised explosive devices in Colombia“, gehalten auf der Workshop on Research Cooperation Germany - Colombia, Bogotá, 2017, Publiziert.
[17]
J. Altholz, J. Barowski, C. Baer, und I. Rolfes, „An FDFD-based simulation concept for stochastic investigations on improvised explosive devices in Colombia“, in Mine Detection Symposium 2017, 2017, Publiziert.

2016

[1]
C. Baer, T. Musch, C. Schulz, und I. Rolfes, „A polarimetric, low ringing UWB antenna for ground penetrating radar operation“, in 2016 IEEE Antennas and Propagation Society International Symposium, Fajardo, 2016, S. 2121–2122. doi: 10.1109/aps.2016.7696767.
[2]
C. Baer, B. Hattenhorst, C. Schulz, B. Will, I. Rolfes, und T. Musch, „Analysis of composite materials with periodically aligned inclusions using 3D EM field simulations“, in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, S. 120–123. doi: 10.1109/gemic.2016.7461571.
[3]
B. Hattenhorst, C. Baer, und T. Musch, „Detection of fluid vortices based on compensated FMCW-radar phase measurements“, in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, S. 301–304. doi: 10.1109/gemic.2016.7461616.
[4]
C. Baer u. a., „Investigation of a mmWave-radar-based sensor for snow-suspension density measurements“, IEEE sensors journal / Institute of Electrical and Electronics Engineers, Bd. 16, Nr. 24, S. 8861–8862, Okt. 2016, doi: 10.1109/jsen.2016.2620340.
[5]
B. Hattenhorst, C. Baer, T. Musch, C. Schulz, und I. Rolfes, „Microwave near-field sensor for the contactless detection of material fluctuations“, in 2016 46th European Microwave Conference (EuMC 2016), London, 2016, S. 512–515. doi: 10.1109/eumc.2016.7824392.
[6]
B. Hattenhorst, C. Baer, und T. Musch, „Microwave near-field sensor for contactless gas pressure determination“, 7808455, 2016. doi: 10.1109/icsens.2016.7808455.
[7]
T. Just, S. Gutierrez, J. Sachs, C. Baer, F. Vega, und R. Bustamante, „Permittivity of improvised explosives made of ammonium nitrate and fuel oil“, in EUROEM 2016, book of abstracts, London, 2016, Publiziert. [Online]. Verfügbar unter: http://ece-research.unm.edu/summa/notes/AMEREM-EUROEM/EUROEM%202016%20Book%20of%20Abstracts.pdf
[8]
J. Sachs, R. Bustamante, F. Vega, und C. Baer, „Humanitarian microwave detection of improvised explosive devices in Colombia (Project MEDICI)“, in EUROEM 2016, book of abstracts, London, 2016, Publiziert. [Online]. Verfügbar unter: http://ece-research.unm.edu/summa/notes/AMEREM-EUROEM/EUROEM%202016%20Book%20of%20Abstracts.pdf
[9]
D. R. Martínez u. a., „UWB backscattering characterization of improvised explosives devices“, in EUROEM 2016, book of abstracts, London, 2016, Publiziert. [Online]. Verfügbar unter: http://ece-research.unm.edu/summa/notes/AMEREM-EUROEM/EUROEM%202016%20Book%20of%20Abstracts.pdf
[10]
T. Jaeschke, C. Bredendiek, S. Küppers, C. Schulz, C. Baer, und N. Pohl, „Cross-polarized multi-channel W-band radar for turbulent flow velocity measurements“, in 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francissco, Ca., 2016, Publiziert. doi: 10.1109/mwsym.2016.7540256.
[11]
C. Baer, „mmWave radar: a Swiss Army Knife device for contact-free metrology“, 10. Oktober 2016, Publiziert.
[12]
C. Baer, „Introduction to radar“, gehalten auf der Summer School at Universidad Nacional de Colombia, Bogotá, 2016, Publiziert.
[13]
C. Baer, G. Notzon, T. Musch, C. Dahl, und I. Rolfes, „Plaque-Charakterisierung mittels mm-Wellen auf einem Katheter (Plaque-CharM): Schlussbericht“, 2016.

2015

[1]
C. Baer und T. Musch, „Radar based ground level reconstruction utilizing a hypocycloid antenna positioning system“, Frequenz, Bd. 69, Nr. 1–2, S. 57–64, 2015, doi: 10.1515/freq-2014-0116.
[2]
C. Baer, C. Schulz, G. Notzon, I. Rolfes, und T. Musch, „On the human blood permittivity: model parameters and substitution material for mmWave applications“, in 2015 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio 2015) , Taipeh, 2015, S. 30–31. doi: 10.1109/imws-bio.2015.7303760.
[3]
C. Baer, „Massendurchflussmessung von pneumatisch geförderten Feststoffen auf Basis von hochpräzisen FMCW-Radarsystemen“, Verlag Dr. Hut, München, 2015.
[4]
C. Baer, B. Hattenhorst, C. Schulz, B. Will, I. Rolfes, und T. Musch, „Effective permittivity determination of randomized mixed materials using 3D electromagnetic simulations“, in 2015 IEEE MTT-S International Microwave Symposium (IMS 2015), Phoenix, Ariz., 2015, S. 339–343. doi: 10.1109/mwsym.2015.7166797.
[5]
G. Notzon, C. Baer, T. Musch, C. Dahl, und I. Rolfes, „Conformal mm-wave antennas for catheter embedded atherosclerotic plaque sensors“, in 2015 European Microwave Conference (EuMC 2015), Paris, 2015, S. 825–828. doi: 10.1109/eumc.2015.7345891.
[6]
B. Hattenhorst, C. Baer, T. Musch, C. Schulz, und I. Rolfes, „Electromagnetic characterization of fluid vortices by means of three-dimensional field simulations“, in 2015 European Microwave Conference (EuMC 2015), Paris, 2015, S. 32–35. doi: 10.1109/eumc.2015.7345692.
[7]
B. Hattenhorst, H. Theißen, C. Schulz, I. Rolfes, C. Baer, und T. Musch, „Microwave sensor concept for the detection of gas inclusions inside microfluidic channels“, in 2015 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio 2015) , Taipeh, 2015, S. 108–109. doi: 10.1109/imws-bio.2015.7303801.
[8]
C. Baer, C. Schulz, I. Rolfes, und T. Musch, „Dielectric waveguides for industrial radar applications“, International journal of microwave and wireless technologies, Bd. 7, Nr. 3–4, S. 399–406, 2015, doi: 10.1017/s1759078715000136.
[9]
C. Schulz, C. Baer, T. Musch, I. Rolfes, und B. Will, „Investigation of a circular TE11-TE01-mode converter in stepped waveguide technique“, International journal of microwave and wireless technologies, Bd. 7, Nr. 3–4, S. 229–237, 2015, doi: 10.1017/s1759078715000203.
[10]
C. Baer, T. Jaeschke, N. Pohl, und T. Musch, „Contactless detection of state parameter fluctuations of gaseous media based on an mm-wave FMCW radar“, IEEE transactions on instrumentation and measurement / Institute of Electrical and Electronics Engineers, Bd. 64, Nr. 4, S. 865–872, 2015, doi: 10.1109/tim.2014.2374696.
[11]
C. Baer, „HF- und Radartechnik - Studium und Forschung an der Ruhr-Universität Bochum“, 17. Dezember 2015, Publiziert.
[12]
C. Baer, „Radartechnik - das Universalwerkzeug der berührungslosen Mechanik“, 11. November 2015, Publiziert.
[13]
C. Baer, „Application of mmWave radar and radar imaging“, 5. November 2015, Publiziert.
[14]
C. Baer, „Mass flow determination of pulverized fuels by means of FMCW-radar systems“, gehalten auf der BioSense Scientific Workshop, Novi Sad, 18. Februar 2015, Publiziert.
[15]
C. Baer, A. M. Bilgic, M. Deilmann, T. Musch, und S. Neuburger, „Device for determining the fill level of a medium in a container“, 201514980385 [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=US000010012525B2
[16]
C. Baer, A. M. Bilgic, M. Deilmann, T. Musch, und S. Neuburger, „Device for determining the fill level of a medium in a container“, 201514980454 [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=US000009891092B2
[17]
C. Baer, T. Musch, M. Deilmann, A. M. Bilgic, und S. Neuburger, „Device for determining the fill level of a medium“, 14/980,429 [Online]. Verfügbar unter: https://worldwide.espacenet.com/patent/search/family/054695604/publication/US9851236B2?q=num%20%3D%20%22US9851236B2%22

2014

[1]
C. Baer, T. Musch, C. Schulz, und I. Rolfes, „A robust dielectric feeding concept for harsh environmental TLPR antennas“, in 2014 European Radar Conference (EuRAD 2014), Rom, 2014, S. 297–300. doi: 10.1109/eurad.2014.6991266.
[2]
C. Baer und T. Musch, „A uniaxial radar positioning system for ground level reconstruction“, in GeMiC 2014, Aachen, 2014, Bd. 246. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/6775117
[3]
C. Baer und T. Musch, „Conceptual design of a high gain antenna system with wide range beam steering capability for broadband radar applications“, in 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Palm Beach, Aruba, 2014, S. 730–733. doi: 10.1109/apwc.2014.6905582.
[4]
C. Baer, T. Jaeschke, P. Mertmann, N. Pohl, und T. Musch, „A mmWave measuring procedure for mass flow monitoring of pneumatic conveyed bulk materials“, IEEE sensors journal / Institute of Electrical and Electronics Engineers, Bd. 14, Nr. 9, S. 3201–3209, 2014, doi: 10.1109/jsen.2014.2326042.
[5]
C. Baer, T. Musch, T. Jaeschke, und N. Pohl, „Contactless determination of gas concentration and pressure based on a low jitter mmWave FMCW radar“, in 2014 IEEE Sensors Applications Symposium (SAS 2014), Queenstown, 2014, S. 11–14. doi: 10.1109/sas.2014.6798907.
[6]
C. Baer und C. Schulz, „Nach dem Radarprinzip arbeitendes Füllstandmessgerät und Übertragungsstrecke für ein Füllstandmessgerät“, 102014118867 [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102014118867A1

2013

[1]
C. Baer, T. Musch, S. Neuburger, M. Vogt, und T. Jaeschke, „Verfahren und Vorrichtung zur Bestimmung der Geschwindigkeit eines Mediums“, 102013018386 [Online]. Verfügbar unter: https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150507&DB=&locale=de_EP&CC=DE&NR=102013018386A1&KC=A1&ND=4
[2]
C. Dahl, C. Schulz, C. Baer, T. Musch, B. Will, und I. Rolfes, „Entwicklung einer dielektrischen Antenne zur Strahlschwenkung mit kongruenten Richtcharakteristiken“, Tagungsprogramm, Kleinheubacher Tagung 2013. S. 6, 2013. [Online]. Verfügbar unter: https://www.kh2013.de/kleinheubacher_tagung_2013_abstracts.pdf
[3]
C. Baer und T. Musch, „Ein Nahfeld-Antennensystem zur optimierten Massendurchflussmessung in pneumatischen Förderanlagen“, Tagungsprogramm, Kleinheubacher Tagung 2013. S. 5–6, 2013. [OnlineRessource]. Verfügbar unter: http://www.kh2013.de/kleinheubacher_tagung_2013_abstracts.pdf
[4]
C. Baer, S. Baer, und T. Musch, „Positioning device and measuring device“, 13/850,791 [Online]. Verfügbar unter: https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160705&DB=&locale=de_EP&CC=US&NR=9382984B2&KC=B2&ND=5
[5]
C. Schulz, C. Baer, N. Pohl, T. Musch, B. Will, und I. Rolfes, „A multi directional dielectric lens approach for antennas used in industrial RADAR applications“, in 2013 International Workshop on Antenna Technology (iWAT 2013), Karlsruhe, 2013, S. 328–331. doi: 10.1109/iwat.2013.6518358.
[6]
C. Dahl, B. Will, C. Schulz, I. Rolfes, C. Baer, und T. Musch, „Conceptual design of a dielectric hemispherical lens antenna with a congruent radiation pattern for beam steering applications“, in 2013 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Lake Buena Vista, Orlando, Fla., 2013, S. 1296–1297. doi: 10.1109/aps.2013.6711308.
[7]
C. Baer, T. Musch, C. Schulz, B. Will, und I. Rolfes, „A monostatic antenna-reflector system for ultra-short-range radar applications“, in 2013 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Lake Buena Vista, Orlando, Fla., 2013, S. 956–957. doi: 10.1109/aps.2013.6711137.
[8]
C. Baer u. a., „A millimeter-wave based measuring method for the differentiation of atherosclerotic plaques“, in 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio 2013) , Singapur, 2013, S. 43–46. doi: 10.1109/imws-bio.2013.6756167.
[9]
B. Will, C. Schulz, C. Baer, M. Gerding, T. Musch, und I. Rolfes, „A measurement system for soil moisture characterizations based on time domain transmission“, in ISEMA 2013, Weimar, 2013, S. 275–282.
[10]
C. Dahl, C. Schulz, B. Will, I. Rolfes, C. Baer, und T. Musch, „A feeding concept of a dielectric hemispherical lens antenna for polarimetric radar applications“, in 2013 European Microwave Conference (EuMC 2013), Nürnberg, 2013, S. 1683–1686. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/6686999
[11]
C. Dahl, C. Schulz, B. Will, I. Rolfes, C. Baer, und T. Musch, „A feeding concept of a dielectric hemispherical lens antenna for polarimetric radar applications“, in 2013 European Radar Conference (EuRAD 2013), Nürnberg, 2013, S. 371–374. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/6689191
[12]
C. Baer, C. Schulz, B. Will, I. Rolfes, und T. Musch, „A polarimetric measurement concept for the permittivity determination of mixed dielectric materials using a monostatic antenna-reflector system“, in ISEMA 2013, Weimar, 2013, S. 105–112.
[13]
C. Schulz, B. Will, I. Rolfes, N. Pohl, C. Baer, und T. Musch, „Characterization of beam steering lens antenna for industrial radar measurements in harsh environments“, in 2013 European Radar Conference (EuRAD 2013), Nürnberg, 2013, S. 117–120. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/6689127
[14]
C. Baer, P. Mertmann, T. Musch, T. Jaeschke, und N. Pohl, „A measuring method for the mass flow determination in a pneumatic conveying system“, in 2013 IEEE sensors, Baltimore, Md., 2013, S. 818–821. doi: 10.1109/icsens.2013.6688333.
[15]
C. Baer, T. Jaeschke, T. Musch, S. Neuburger, und M. Vogt, „Verfahren und Vorrichtung zur Bestimmung der Geschwindigkeit eines Mediums“, 102013018386 [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102013018386A1

2012

[1]
C. Baer, „Precise microwave measurement concepts for volume fraction determination in pneumatic conveying tubes“, in Proceedings of 2nd RURS Research Day, Bochum, 2012, S. 57.
[2]
C. Baer, M. Vogt, und T. Musch, „Volume fraction determination of pneumatic conveyed rice by means of the pseudo transmission measurement concept“, in Kleinheubacher Tagung 2012, Miltenberg, Sep. 2012, Publiziert.
[3]
C. Schulz, C. Baer, N. Pohl, T. Musch, und I. Rolfes, „Konzept zur multistatischen Strahlschwenkung einer dielektrischen ellipsoidalen Antenne für industrielle Radaranwendungen bei 24 GHz“, gehalten auf der Informationstechnische Gesellschaft, Fachausschuss Meßverfahren der Informationstechnik, Diskussionssitzung zum Thema Radartechniken, Bochum, 31. Mai 2012, Publiziert.
[4]
C. Baer, C. Schulz, und M. Gerding, „Dielectric antenna and fill level sensor using the radar principle“, 201213569488 [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=US020130220011A1
[5]
B. Will, M. Gerding, C. Schulz, C. Baer, T. Musch, und I. Rolfes, „A time domain transmission measurement system for dielectric characterizations“, International journal of microwave and wireless technologies, Bd. 4, Nr. 3, S. 349–355, 2012, doi: 10.1017/s1759078712000347.
[6]
C. Baer, M. Vogt, und T. Musch, „Pseudo transmission measurement concept for the volume fraction determination of rice in a pneumatic conveying system“, in 2012 International Conference on Electromagnetics in Advanced Applications (ICEAA 2012), Kapstadt, 2012, S. 744–747. doi: 10.1109/iceaa.2012.6328727.
[7]
T. Jaeschke, M. Vogt, C. Baer, C. Bredendiek, und N. Pohl, „Improvements in distance measurement and SAR-imaging applications by using ultra-high resolution mm-wave FMCW radar systems“, in 2012 IEEE/MTT-S International Microwave Symposium digest (MTT 2012), Montreal, 2012, S. 1330–1332. doi: 10.1109/mwsym.2012.6259621.
[8]
C. Baer, C. Schulz, B. Will, I. Rolfes, und T. Musch, „A planar orthomode transducer for broadband applications at 25 GHz using a stepped waveguide technique“, in 2012 Asia Pacific Microwave Conference proceedings (APMC 2012), Kaohsiung, Taiwan, 2012, S. 373–375. doi: 10.1109/apmc.2012.6421602.
[9]
C. Schulz, C. Baer, N. Pohl, T. Musch, und I. Rolfes, „A multistatic feeding concept for beam steering based on a dielectric ellipsoidal antenna“, in 2012 Asia Pacific Microwave Conference proceedings (APMC 2012), Kaohsiung, Taiwan, 2012, S. 286–288. doi: 10.1109/apmc.2012.6421574.
[10]
C. Baer, T. Musch, und M. Vogt, „Volume fraction determination in pneumatic conveying systems by means of the pseudo transmission measurement concept using a transpolarizing reflector“, in 2012 42nd European Microwave Conference (EuMC 2012), Amsterdam, 2012, S. 651–654. doi: 10.23919/eumc.2012.6459254.
[11]
C. Baer, N. Pohl, M. Gerding, M. Vogt, und T. Musch, „A broadband double transmission measurement concept for density determination of solid particle flows in pneumatic conveying systems with microwaves“, in Kleinheubacher Tagung 2011, Miltenberg, 2012, Publiziert.
[12]
C. Baer, „Device for determining the volume fraction of at least one component of a multi-phase medium“, 201213479764 [Online]. Verfügbar unter: https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2012300207A1&KC=A1&FT=D&ND=4&date=20121129&DB=&locale=en_EP
[13]
C. Baer, M. Gerding, und C. Schulz, „Dielectric antenna and fill level sensor using the radar principle“, 201213569488 [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=US000008881588B2
[14]
C. Baer, M. Gerding, und C. Schulz, „Dielectric antenna and fill level sensor using the radar principle“, 201213569488 [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=US020130220011A1

2011

[1]
C. Baer, N. Pohl, M. Gerding, M. Vogt, und T. Musch, „A broadband double transmission measurement concept for density determination of solid particle flows in pneumatic conveying systems with microwaves (23 – 27 GHz)“, gehalten auf der Kleinheubacher Tagung, Miltenberg, 26. September 2011, Publiziert.
[2]
C. Baer, „Ein hochfrequentes Messverfahren zur Permittivitätsbestimmung von Stoffgemischen“, gehalten auf der Informationstechnische Gesellschaft, Fachausschuss Meßverfahren der Informationstechnik, Diskussionssitzung zum Thema Materialcharakterisierung, Bochum, 31. März 2011, Publiziert.
[3]
C. Schulz, C. Baer, T. Musch, und I. Rolfes, „A broadband stacked patch antenna with enhanced antenna gain by an optimized ellipsoidal reflector for X-band applications“, in 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), Tel Aviv, 2011, S. 735–741. doi: 10.1109/comcas.2011.6105928.
[4]
C. Baer, T. Musch, M. Gerding, und M. Vogt, „Conceptual design of a procedure for density monitoring of pulverized fuels in pneumatic conveying systems with microwaves (8-12 GHz)“, in German Microwave Conference (GeMiC 2011), Darmstadt, 2011, S. 107–110. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/5760717?arnumber=5760717&filter=AND(p_Publication_Number:5754332)
[5]
C. Baer, T. Musch, M. Gerding, N. Pohl, und M. Vogt, „Evaluation of a double transmission measurement concept for the characterization of dielectric material compositions with microwaves“, in 9th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA 2011), Kansas City, Mo., 2011, S. 15–21.
[6]
C. Baer, M. Gerding, N. Pohl, M. Vogt, und T. Musch, „Accurate double transmission measurement concepts for the permittivity determination in pneumatic conveying tubes with microwaves“, in 2011 Asia-Pacific Microwave Conference proceedings (APMC 2011), Melbourne, 2011, S. 1814–1817. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/6174125
[7]
C. Baer, T. Musch, M. Gerding, und M. Vogt, „Evaluation of a concept for density measurement of solid particle flows in pneumatic conveying systems with microwaves (8–12 GHz)“, Advances in radio science, Bd. 9, S. 27–30, 2011, doi: 10.5194/ars-9-27-2011.

2010

[1]
C. Baer und T. Musch, „A passive 8 to 24 GHz frequency tripler based on microstrip line circuits and Schottky diodes“, in 2010 Asia-Pacific Microwave Conference proceedings (APMC 2010), Yokohama, 2010, S. 706–709. [Online]. Verfügbar unter: https://ieeexplore.ieee.org/document/5728439

2008

[1]
C. Baer, B. Will, M. Gerding, und M. Vogt, „Utilization of an industrial radar system for surface profile assessment and measurement“, gehalten auf der Kleinheubacher Tagung, Miltenberg, 25. September 2008, Publiziert.

Ohne Angabe

[1]
C. Schulz und C. Baer, „Vorrichtung für die Kalibration eines Radar-Entfernungsmessgeräts und Verfahren zum Kalibrieren eines Radar-Entfernungsmessgeräts“ [Online]. Verfügbar unter: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102017123435A1
To Top