Dr. Efe Kemaneci
Lecturer
Theoretical Electrical Engineering
Address:
Ruhr-University Bochum
Faculty for Electrical Engineering and Information Technology
Theoretical Electrical Engineering
Postbox ID 18
Universitätsstraße 150
D-44801 Bochum
Room:
ID 1/133
Phone:
(+49)(0)234 / 32 - 26343
Fax:
(+49)(0)234 / 32 - 14479
Email:
efe.kemaneci(at)rub.de
Article journal
2024
[1]
Y. He et al., ‘Zero-dimensional simulations of DC ns-pulsed plasma jet in N2 at near atmospheric pressure : validation of the vibrational kinetics’, Plasma sources science & technology, vol. 33, no. 11, Art. no. 115011, Oct. 2024, doi: 10.1088/1361-6595/ad8a86.
[2]
E. Kemaneci, A. von Keudell, L. Heijmans, A. M. Yakunin, and M. van de Kerkhof, ‘A global plasma and surface model of hydrogen/methane inductively coupled discharge to analyze hydrocarbon plasma–surface interactions in extreme-ultraviolet lithography machines’, Journal of applied physics, vol. 136, no. 4, Art. no. 043301, Jul. 2024, doi: 10.1063/5.0213569.
2023
[1]
D. Eremin, E. Kemaneci, M. Matsukuma, T. Mussenbrock, and R. P. Brinkmann, ‘Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code’, Plasma sources science & technology, vol. 32, no. 4, Art. no. 044007, Apr. 2023, doi: 10.1088/1361-6595/accecb.
[2]
T. De los Arcos et al., ‘PECVD and PEALD on polymer substrates (part II): Understanding and tuning of barrier and membrane properties of thin films’, Plasma processes and polymers, vol. 21, no. 3, Art. no. 2300186, Nov. 2023, doi: 10.1002/ppap.202300186.
2021
[1]
K. Köhn, D. Krüger, E. Kemaneci, L. Xu, D. Eremin, and R. P. Brinkmann, ‘On the justification of the Poisson-Boltzmann equation in the context of technological plasmas’, Plasma sources science & technology, vol. 30, no. 10, Art. no. 105014, Oct. 2021, doi: 10.1088/1361-6595/ac278b.
[2]
M. Klute et al., ‘Modelling of a miniature microwave driven nitrogen plasma jet and comparison to measurements’, Plasma sources science & technology, vol. 30, no. 6, Art. no. 065014, Jun. 2021, doi: 10.1088/1361-6595/ac04bc.
[3]
Y. He et al., ‘Zero-dimensional and pseudo-one-dimensional models of atmospheric-pressure plasma jets in binary and ternary mixtures of oxygen and nitrogen with helium background’, Plasma sources science & technology, vol. 30, no. 10, Art. no. 105017, Oct. 2021, doi: 10.1088/1361-6595/ac278d.
2019
[1]
E. Kemaneci, F. Mitschker, J. Benedikt, D. Eremin, P. Awakowicz, and R. P. Brinkmann, ‘A numerical analysis of a microwave induced coaxial surface wave discharge fed with a mixture of oxygen and hexamethyldisiloxane for the purpose of deposition’, Plasma sources science & technology, vol. 28, no. 11, p. 115003, 2019, doi: 10.1088/1361-6595/ab3f8a.
2017
[1]
E. Kemaneci et al., ‘A global model of cylindrical and coaxial surface-wave discharges’, Journal of physics D, vol. 50, no. 24, Art. no. 245203, May 2017, doi: 10.1088/1361-6463/aa7093.
2016
[1]
E. Kemaneci, J.-P. Booth, P. Chabert, J. van Dijk, T. Mussenbrock, and R. P. Brinkmann, ‘A computational analysis of the vibrational levels of molecular oxygen in low-pressure stationary and transient radio-frequency oxygen plasma’, Plasma sources science & technology, vol. 25, no. 2, Art. no. 025025, Mar. 2016, doi: 10.1088/0963-0252/25/2/025025.
2015
[1]
E. Kemaneci et al., ‘Modelling of an intermediate pressure microwave oxygen discharge reactor: from stationary two-dimensional to time-dependent global (volume-averaged) plasma models’, Journal of physics D, vol. 48, no. 43, Art. no. 435203, 2015, doi: 10.1088/0022-3727/48/43/435203.
2014
[1]
E. Kemaneci, E. Carbone, J.-P. Booth, W. Graef, J. van Dijk, and G. Kroesen, ‘Global (volume-averaged) model of inductively coupled chlorine plasma: influence of Cl wall recombination and external heating on continuous and pulse-modulated plasmas’, Plasma sources science & technology, vol. 23, no. 4, Art. no. 045002, 2014, doi: 10.1088/0963-0252/23/4/045002.
[2]
S. Rahimi, M. Jimenez-Diaz, S. Hübner, E. Kemaneci, J. J. A. M. van der Mullen, and J. van Dijk, ‘A two-dimensional modelling study of a coaxial plasma waveguide’, Journal of physics D, vol. 47, no. 12, pp. 125204-1-125204–13, 2014, doi: 10.1088/0022-3727/47/12/125204.
Chapter in conference
2023
[1]
D. Eremin, E. Kemaneci, P. Awakowicz, T. Mussenbrock, and R. P. Brinkmann, ‘Electromagnetic particle-in-cell simulations of surface wave effects in various plasmas’, in Bulletin of the American Physical Society, Ann Arbor, 2023, vol. 68. [Online]. Available: https://meetings.aps.org/Meeting/GEC23/Content/4418
2022
[1]
D. Eremin, E. Kemaneci, M. Matsukuma , T. Mussenbrock, and R. P. Brinkmann, ‘Generation of surface modes and plasma uniformity in VHF CCP reactors studied with a EM PIC code’, in Bulletin of the American Physical Society, Sendai, Oct. 2022, vol. 67, no. 9. [Online]. Available: https://meetings.aps.org/Meeting/GEC22/Session/ER4.6
[2]
E. Kemaneci, A. von Keudell, A. Yakunin, A. Nikipelov, M. van de Kerkhof, and V. Banine, ‘A global plasma and surface model of a hydrogen/methane inductively coupled discharges for the purpose of minimal optical transmission loss in extreme-ultra-violet lithography machines’, in Bulletin of the American Physical Society, Sendai, 2022, vol. 67, no. 9. [Online]. Available: https://meetings.aps.org/Meeting/GEC22/Session/EW5.1
2017
[1]
E. Kemaneci, R. P. Brinkmann, F. Mitschker, and P. Awakowicz, ‘A zero dimensional model of microwave induced coaxial surface wave discharge fed with hexamethyldisiloxane/oxygen’, in Bulletin of the American Physical Society, Pittsburgh, PA, 2017, vol. 62, no. 10. [Online]. Available: https://meetings.aps.org/Meeting/GEC17/Session/JW1.3
[2]
R. Smith et al., ‘Comparison of zero dimensional plasma chemistry model with ozone absorption spectroscopy measurements’, in Bulletin of the American Physical Society, Pittsburgh, PA, 2017, vol. 62, no. 10. [Online]. Available: https://meetings.aps.org/Meeting/GEC17/Session/NW1.24
2016
[1]
S. Naggary, E. Kemaneci, R. P. Brinkmann, and M. Megahed, ‘Investigation of plasma-sheath resonances in low pressure discharges’, in Bulletin of the American Physical Society, Bochum, 2016, vol. 61, no. 9. [Online]. Available: https://meetings.aps.org/Meeting/GEC16/Session/VF2.5
[2]
R. Smith, E. Kemaneci, B. Offerhaus, K. Stapelmann, and R. P. Brinkmann, ‘Zero dimensional model of atmospheric SMD discharge and afterglow in humid air’, in Bulletin of the American Physical Society, Bochum, 2016, vol. 61, no. 9. [Online]. Available: https://meetings.aps.org/Meeting/GEC16/Session/NW3.2
[3]
R. Smith, E. Kemaneci, B. Offerhaus, K. Stapelmann, and R. P. Brinkmann, ‘Zero dimensional model of atmospheric SMD discharge and afterglow in humid air’, in 2016 IEEE International Conference on Plasma Science (ICOPS 2016), Banff, Alberta, 2016, p. 395. doi: 10.1109/plasma.2016.7534332.
[4]
E. Kemaneci and R. P. Brinkmann, ‘Global modelling of cylindrical surface wave discharges’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Hannover, 2016, vol. 6. Reihe, Bd 51, no. 1. [Online]. Available: http://www.dpg-verhandlungen.de/year/2016/conference/hannover/part/p/session/24/contribution/4
[5]
E. Kemaneci and R. P. Brinkmann, ‘Global modelling of cylindrical surface-wave discharges: argon or oxygen’, in 2016 IEEE International Conference on Plasma Science (ICOPS 2016), Banff, Alberta, 2016, p. 114. doi: 10.1109/plasma.2016.7534051.
[6]
E. Kemaneci et al., ‘A self-consistent global model of surface wave discharges with cylindrical or co-axial structures: Ar or O2 fed with continuous or pulse-modulated power input’, in Bulletin of the American Physical Society, Bochum, 2016, vol. 61, no. 9. [Online]. Available: http://meetings.aps.org/Meeting/GEC16/Session/MW6.73
[7]
T. Rehman, E. Kemaneci, W. Graef, and J. van Dijk, ‘Plasma chemistry reduction from ILDM’, in Bulletin of the American Physical Society, Bochum, 2016, vol. 61, no. 9. [Online]. Available: https://meetings.aps.org/Meeting/GEC16/Session/MW6.75
2015
[1]
S. Naggary, E. Kemaneci, R. P. Brinkmann, M. Shihab, Z. Kovács, and M. Megahed, ‘Modeling of dual frequency capacitive discharges with pulse-modulated power input’, in Bulletin of the American Physical Society, Honolulu, 2015, vol. 60, no. 9. [Online]. Available: https://meetings.aps.org/Meeting/GEC15/Session/LW1.24
[2]
E. Kemaneci, J. van Dijk, T. Mussenbrock, and R. P. Brinkmann, ‘Global model of oxygen plasmas: a benchmark study and the role of the vibrational quanta of O2’, in Bulletin of the American Physical Society, Honolulu, 2015, vol. 60, no. 9. [Online]. Available: http://meetings.aps.org/Meeting/GEC15/Session/UF3.5
[3]
T. Rehman, K. Peerenboom, E. Kemaneci, W. Graef, and J. van Dijk, ‘Application of ILDM for simplifying complex plasma chemistry’, in Bulletin of the American Physical Society, Honolulu, 2015, vol. 60, no. 9. [Online]. Available: https://meetings.aps.org/Meeting/GEC15/Session/IW3.4
2013
[1]
E. Kemaneci et al., ‘Global model of inductively coupled radio-frequency Cl2 plasma: dissociation, excitation and power modulation’, in 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS 2013), San Francisco, CA, 2013, p. 654. doi: 10.1109/plasma.2013.6634959.
Dissertation
2014
[1]
E. Kemaneci, ‘Modelling of plasmas with complex chemistry: application to microwave deposition reactors’, Technische Universiteit Eindhoven, Eindhoven, 2014. doi: 10.6100/ir771642.