2024

[1]
P. A. Dainone et al., ‘Controlling the helicity of light by electrical magnetization switching’, Nature, vol. 627, no. 8005, pp. 783–788, Mar. 2024, doi: 10.1038/s41586-024-07125-5.
[2]
L. Zens, V. Besaga, J. Möller, N. C. Gerhardt, and M. R. Hofmann, ‘Holographic measurement of gain and linewidth enhancement factor in semiconductor waveguides’, Optics express, vol. 33, no. 1, pp. 34–49, Nov. 2024, doi: 10.1364/oe.538741.

2023

[1]
M. Lindemann et al., ‘Polarization dynamics in spin‐VCSELs with integrated surface grating for high birefringence splitting’, Electronics letters, vol. 59, no. 13, Art. no. e12827, Jul. 2023, doi: 10.1049/ell2.12827.
[2]
N. Jung et al., ‘Elektrische Spin Injektion in kantenemittierenden Halbleiterlasern’, in MikroSystemTechnik Kongress 2023, Dresden, 2023, pp. 108–112.

2022

[1]
N. Heermeier et al., ‘Spin‐lasing in bimodal quantum dot micropillar cavities’, Laser & photonics reviews, vol. 2022, Art. no. 2100585, Feb. 2022, doi: 10.1002/lpor.202100585.
[2]
K. Neutsch, E. L. Gurevich, M. R. Hofmann, and N. C. Gerhardt, ‘Investigation of laser-induced periodic surface structures using synthetic optical holography’, Nanomaterials, vol. 13, no. 3, Art. no. 505, Feb. 2022, doi: 10.3390/nano12030505.
[3]
J. Möller et al., ‘Tuning of optical coherence tomography texture features as a basis for tissue differentiation in glioblastoma samples’, in Optical coherence tomography and coherence domain optical methods in biomedicine XXVI, San Francisco, Mar. 2022, vol. 11948. doi: 10.1117/12.2609402.
[4]
J. Möller et al., ‘Tuning of optical coherence tomography texture features as a basis for tissue differentiation in glioblastoma samples’, presented at the SPIE BiOS, San Francisco, 2022, Published. doi: 10.1117/12.2609402.
[5]
M. R. Hofmann, M. Lindemann, N. Jung, T. Pusch, R. Michalzik, and N. C. Gerhardt, ‘Can Spin-VCSELs open the bandwidth bottleneck?’, presented at the European Semiconductor Laser Workshop 2022 | ESLW 2022, Neuchatel, 2022, Published.
[6]
N. Heermeier et al., ‘Spin lasing in high-beta bimodal quantum dot micropillar cavities ’, in Spintronics XV, San Diego, Oct. 2022, vol. 12205. doi: 10.1117/12.2632687.

2021

[1]
N. Jung et al., ‘Investigations on polarization dynamics of birefringent spin-VCSELs’, in Vertical-Cavity Surface-Emitting Lasers XXV, 2021, vol. 11704. doi: 10.1117/12.2577488.
[2]
N. Jung, M. Lindemann, T. Pusch, R. Michalzik, M. R. Hofmann, and N. C. Gerhardt, ‘Integrated spin-lasers for ultrafast polarization modulation’, in Spintronics XIV, San Diego, 2021, vol. 11805. doi: 10.1117/12.2594560.
[3]
T. Heuser et al., ‘Spin lasing in bimodal quantum dot micropillar cavities’, in Spintronics XIV, San Diego, 2021, vol. 11805. doi: 10.1117/12.2596029.
[4]
V. Besaga, N. C. Gerhardt, and M. R. Hofmann, ‘Digital holography for spatially resolved analysis of the semiconductor optical response ’, Applied optics, vol. 60, no. 4, pp. A15–A20, 2021, doi: 10.1364/ao.402488.
[5]
N. Jung et al., ‘Investigations on polarization dynamics of birefringent spin-VCSELs’, in Novel In-Plane Semiconductor Lasers XX, Online, 2021, vol. 11705. doi: 10.1117/12.2577488.
[6]
N. Jung, M. Lindemann, T. Pusch, R. Michalzik, M. R. Hofmann, and N. C. Gerhardt, ‘Ultrafast spin lasers’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Online, 2021, vol. 6. Reihe, Bd 56, no. 7. [Online]. Available: https://www.dpg-verhandlungen.de/year/2021/conference/skm/part/hl/session/7/contribution/1
[7]
N. C. Gerhardt, N. Jung, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘Ultrafast spin lasers’, in Bulletin of the American Physical Society, Online, 2021, vol. 66, no. 1. [Online]. Available: https://meetings.aps.org/Meeting/MAR21/Session/S36.2
[8]
N. Jung, M. Lindemann, T. Pusch, R. Michalzik, M. R. Hofmann, and N. C. Gerhardt, ‘Integrated spin-lasers for ultrafast polarization modulation’, presented at the Spintronics , San Diego, 2021, Published.

2020

[1]
M. Lindemann et al., ‘Bias current and temperature dependence of polarization dynamics in spin-lasers with electrically tunable birefringence’, AIP Advances / American Institute of Physics, vol. 10, no. 3, Art. no. 035211, Mar. 2020, doi: 10.1063/1.5139199.
[2]
Y. Shi et al., ‘Time-resolved photoluminescence characterization of InGaAs/GaAs nano-ridges monolithically grown on 300 mm Si substrates’, Journal of applied physics, vol. 127, no. 10, Art. no. 103104, Mar. 2020, doi: 10.1063/1.5139636.
[3]
N. Jung et al., ‘Investigation of the polarization state in spin-VCSELs with thermally tuned birefringence’, in Semiconductor Lasers and Laser Dynamics IX, Online, 2020, vol. 11356. doi: 10.1117/12.2555395.
[4]
T. Pusch et al., ‘Integrated surface gratings in VCSELs for high birefringence splitting’, in Semiconductor Lasers and Laser Dynamics IX, Online, 2020, vol. 11356. doi: 10.1117/12.2554703.
[5]
M. Lindemann et al., ‘Intensity and polarization dynamics in ultrafast birefringent spin-VCSELs’, in Spintronics XIII, Online, 2020, vol. 11470. doi: 10.1117/12.2567628.
[6]
T. Pusch, M. Lindemann, N. Jung, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Manipulation of birefringence in spin-VCSELs’, in Spintronics XIII, Online, 2020, vol. 11470. doi: 10.1117/12.2567336.
[7]
V. Besaga, N. C. Gerhardt, and M. R. Hofmann, ‘Digital holography for evaluation of the refractive index distribution externally induced in semiconductors’, in Practical Holography XXXIV: Displays, materials, and applications, San Francisco, Calif., 2020, vol. 11306. doi: 10.1117/12.2544160.
[8]
V. Besaga, N. C. Gerhardt, and M. R. Hofmann, ‘Inspection of semiconductor-based planar wave-guiding structures with a near-infrared transmission digital holographic microscopy’, in Fourteenth International Conference on Correlation Optics, Černivci, 2020, vol. 11369. doi: 10.1117/12.2553911.
[9]
J. Möller et al., ‘In vivo imaging of human peripheral nerves using optical coherence tomography compared to histopathology slices’, in Optical coherence tomography and coherence domain optical methods in biomedicine XXIV, San Francisco, Feb. 2020, vol. 11228. doi: 10.1117/12.2544801.
[10]
L. Schnitzler, K. Neutsch, F. Schellenberg, M. R. Hofmann, and N. C. Gerhardt, ‘Confocal laser scanning holographic microscopy of buried structures’, Applied optics, vol. 60, no. 4, pp. A8–A14, Oct. 2020, doi: 10.1364/ao.403687.
[11]
I. Žutić et al., ‘Spin-lasers: spintronics beyond magnetoresistance’, Solid state communications, vol. 316–317, Art. no. 113949, 2020, doi: 10.1016/j.ssc.2020.113949.
[12]
I. Žutić, G. Xu, M. Lindemann, P. E. Faria Jun., M. R. Hofmann, and N. C. Gerhardt, ‘Putting spin into photonics’, presented at the Quantum Sensing and Nano Electronics and Photonics (Part of SPIE Photonics West), San Francisco, Calif., Feb. 03, 2020, Published.
[13]
K. Neutsch, L. Schnitzler, J. Sun, M. J. Tranelis, M. R. Hofmann, and N. C. Gerhardt, ‘In-depth particle localization with common-path digital holographic microscopy’, in Practical Holography XXXIV: Displays, materials, and applications, San Francisco, Calif., 2020, vol. 11306. doi: 10.1117/12.2545925.
[14]
L. Schnitzler, N. Kleemann, K. Neutsch, M. R. Hofmann, and N. C. Gerhardt, ‘Holographic imaging of particles with Lloyd’s mirror interferometer’, in Digital Holography and Three-Dimensional Imaging, Online, 2020, Published. doi: 10.1364/dh.2020.hth4h.5.
[15]
M. Lindemann et al., ‘Ultrafast spin-lasers’, in PQE-2020, Snowbird, Utah, 2020, p. 196.
[16]
M. Lindemann et al., ‘Ultrafast polarization modulation in birefringent spin-VCSELs’, presented at the Quantum Sensing and Nano Electronics and Photonics (Part of SPIE Photonics West), San Francisco, Calif., Feb. 03, 2020, Published.
[17]
J. Möller et al., ‘In vivo imaging of human peripheral nerves using optical coherence tomography compared to histopathology slices’, presented at the SPIE BIOS, San Francisco, 2020, Published.
[18]
T. Pusch et al., ‘Integrated surface gratings in VCSELs for high birefringence splitting’, presented at the Semiconductor Lasers and Laser Dynamics, online, 2020, Published.
[19]
T. Pusch, M. Lindemann, N. Jung, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Manipulation of birefringence in spin-VCSELs’, presented at the Spintronics, online, 2020, Published.
[20]
M. Lindemann et al., ‘Intensity and polarization dynamics in ultrafast birefringent spin-VCSELs’, presented at the Spintronics, online, 2020, Published.

2019

[1]
M. Lindemann et al., ‘Ultrafast spin-lasers’, Nature, vol. 568, no. 7751, pp. 212–215, Apr. 2019, doi: 10.1038/s41586-019-1073-y.
[2]
K. Neutsch, L. Schnitzler, N. Kleemann, M. R. Hofmann, and N. C. Gerhardt, ‘Ho­lo­gra­phic ima­ging of par­ti­cles using Lloyd’s mir­ror con­fi­gu­ra­ti­on’, in Face2Phase, Delft, 2019, Published.
[3]
V. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Digital holographic microscopy for sub-µm scale high aspect ratio structures in transparent materials’, Optics and lasers in engineering, vol. 121, pp. 441–447, 2019, doi: 10.1016/j.optlaseng.2019.05.007.
[4]
V. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Monitoring of photochemically induced changes in phase-modulating samples with digital holographic microscopy’, Applied optics, vol. 58, no. 34, pp. G41–G47, 2019, doi: 10.1364/ao.58.000g41.
[5]
L. Schnitzler, M. Finkeldey, M. R. Hofmann, and N. C. Gerhardt, ‘Contrast enhancement for topographic imaging in confocal laser scanning microscopy’, Applied Sciences, vol. 9, no. 15, Art. no. 3086, Jul. 2019, doi: 10.3390/app9153086.
[6]
S. Cwik et al., ‘Luminescent Nd2S3 thin films: a new chemical vapour deposition route towards rare-earth sulphides’, Dalton transactions, vol. 48, no. 9, pp. 2926–2938, 2019, doi: 10.1039/c8dt04317e.
[7]
T. Pusch et al., ‘Vertical‐cavity surface‐emitting laser with integrated surface grating for high birefringence splitting’, Electronics Letters [ISSN: 0013-5194], vol. 55, no. 19, p. 10551057, Jul. 2019, doi: 10.1049/el.2019.1441.
[8]
M. Lenz et al., ‘Analysis of in vivo optical coherence tomography images of human peripheral nerves using texture analysis’, in Clinical and Preclinical Optical Diagnostics II, München, 2019, vol. 11073. doi: 10.1117/12.2526755.
[9]
V. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Near real-time digital holographic imaging on conventional central processing unit’, in Optical Measurement Systems for Industrial Inspection XI, München, 2019, vol. 11056. doi: 10.1117/12.2526112.
[10]
K. Neutsch, L. Schnitzler, M. J. Tranelis, M. R. Hofmann, and N. C. Gerhardt, ‘Three-dimensional particle localization with common-path digital holographic microscopy’, in Practical Holography XXXIII: Displays, Materials, and Applications, San Francisco, CA, 2019, vol. 10944. doi: 10.1117/12.2509448.
[11]
N. Jung et al., ‘Polarization dynamics of a VCSEL with thermally tuned birefringence’, presented at the European Semiconductor Laser Workshop (ESLW), Cork, Sep. 27, 2019, Published.
[12]
V. R. Besaga, N. C. Gerhardt, and M. R. Hofmann, ‘Inspection of semiconductor-based planar wave-guiding structures with a near-infrared transmission digital holographic microscopy’, presented at the The Fourteenth International Conference on Correlation Optics, Chernivtsi, Ukraine , 2019, Published.
[13]
T. Pusch, P. Debernardi, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Birefringent surface gratings for ultrafast spin-VCSELs’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2019), München, 2019, p. 1265. doi: 10.1109/cleoe-eqec.2019.8873122.
[14]
T. Pusch, P. Debernardi, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Birefringent Surface Gratings for Ultrafast SpinVCSELs’, presented at the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2019, München, 2019, Published.
[15]
V. R. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Near real-time digital holographic imaging on conventional central processing unit’, presented at the SPIE Optical Measurement Systems for Industrial Inspection , München, 2019, Published.
[16]
M. Lindemann et al., ‘Ultrafast spin-lasers for optical data communication’, presented at the Conference on Lasers and Electro-Optics Europe, München, 2019, Published.
[17]
M. Lindemann et al., ‘Ultrafast spin-lasers for optical data communication’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2019), München, 2019, p. 526. doi: 10.1109/cleoe-eqec.2019.8873073.
[18]
V. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Performance evaluation of digital holographic microscopy for rapid inspection’, presented at the Digital holography and three-dimensional imaging, Bordeaux, France, 2019, Published.
[19]
T. Pusch, P. Debernardi, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Integrated surface gratings for high defined birefringence in VCSELs’, presented at the European VCSEL Day, Brüssel, 2019, Published.
[20]
M. Lindemann et al., ‘Ultrafast Spin-VCSELs and optical data communication’, presented at the European VCSEL Day, Brüssel, 2019, Published.
[21]
N. Jung et al., ‘An approach towards spin-injected edge-emitting semiconductor lasers’, presented at the SIOE, Cardiff, 2019, Published.
[22]
I. Žutić et al., ‘Semiconductor spin-lasers’, in Nanoscale spintronics and applications, vol. 3, E. Y. Tsymbal and I. Žutić, Eds. Boca Raton, Fla.: CRC Press, 2019, pp. 499–540.
[23]
J. Möller et al., ‘In vivo investigation of peripheral nerves using optical coherence tomography and texture analysis’, presented at the INTERPHOTONICS - International Conference on Photonics Research, Antalya, Nov. 06, 2019, Published.
[24]
L. Schnitzler, K. Neutsch, M. R. Hofmann, and N. C. Gerhardt, ‘Common-path digital holographic microscopy for non-destructive testing’, in Face2Phase, Delft, 2019, Published.
[25]
M. Lindemann et al., ‘Ultrafast spin-VCSELs and optical data communication’, presented at the VCSEL Day, Brüssel, May 09, 2019, Published.
[26]
N. C. Gerhardt, M. R. Hofmann, and M. Lindemann, ‘Vorrichtung zur Injektion spinpolarisierter Ladungsträger und zur Reflexion von Licht’, DE102018105345A1
[27]
N. C. Gerhardt et al., ‘Ultrafast spin-lasers for high-speed optical communication’, presented at the Quantum Sensing and Nano Electronics and Photonics, San Francisco, CA, Feb. 07, 2019, Published.
[28]
T. Pusch, P. Debernardi, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Integrated surface gratings for high defined birefringence in VCSELs’, presented at the VCSEL-Day, Brüssel, May 09, 2019, Published.
[29]
N. C. Gerhardt, M. R. Hofmann, and M. Lindemann, ‘Device for injecting spin-polarized charge carriers and for reflecting light’, US201916978757
[30]
M. Lenz et al., ‘Analysis of in vivo optical coherence tomography images of human peripheral nerves using texture analysis’, presented at the Clinical and Preclinical Optical Diagnostics, München, 2019, Published.
[31]
S. Cwik et al., ‘Correction: Luminescent Nd2S3 thin films: a new chemical vapour deposition route towards rare-earth sulphides’, DALTON TRANSACTIONS, vol. 48, no. 44, p. 1681216812, Jan. 2019, doi: 10.1039/c9dt90217a.

2018

[1]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Electrical birefringence tuning of VCSELs’, in Vertical-Cavity Surface-Emitting Lasers XXII, San Francisco, Calif., 2018, vol. 10552. doi: 10.1117/12.2295917.
[2]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. Hofmann, ‘Demonstrating ultrafast polarization dynamics in spin-VCSELs’, in Vertical-Cavity Surface-Emitting Lasers XXII, San Francisco, Calif., 2018, vol. 10552. doi: 10.1117/12.2289560.
[3]
K. Neutsch, L. Göring, and N. C. Gerhardt, ‘Common-path digital holographic microscopy for 3D nanoparticle localization’, in Nanoimaging and Nanospectroscopy VI, San Diego, 2018, vol. 10726. doi: 10.1117/12.2321175.
[4]
M. Lenz et al., ‘Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features’, Journal of biomedical optics, vol. 23, no. 7, p. 071205, 2018, doi: 10.1117/1.jbo.23.7.071205.
[5]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Spin lasers for optical data communication’, in Semiconductor Lasers and Laser Dynamics VIII, Straßburg, 2018, vol. 10682. doi: 10.1117/12.2306464.
[6]
T. Pusch, S. Scherübl, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Thermally-induced birefringence in VCSELs: approaching the limits’, in Semiconductor Lasers and Laser Dynamics VIII, Straßburg, 2018, vol. 10682. doi: 10.1117/12.2306215.
[7]
M. Lenz et al., ‘Brain tissue analysis using texture features based on optical coherence tomography images’, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXII, San Francisco, CA, 2018, vol. 10483. doi: 10.1117/12.2292032.
[8]
M. Lenz et al., ‘Classification of brain tissue with optical coherence tomography by employing texture analysis’, in Optics, Photonics, and Digital Technologies for Imaging Applications V, Strasbourg, 2018, vol. 10679. doi: 10.1117/12.2307701.
[9]
L. Göring, M. R. Hofmann, N. C. Gerhardt, and M. Finkeldey, ‘Digital holography for the investigation of buried structures with a common-path reflection microscope’, in Practical Holography XXXII: Displays, Materials, and Applications, San Francisco, 2018, vol. 10558. doi: 10.1117/12.2289524.
[10]
V. Besaga, N. C. Gerhardt, P. P. Maksimyak, and M. R. Hofmann, ‘A direct-view customer-oriented digital holographic camera’, in Thirteenth International Conference on Correlation Optics, Černivci, 2018, vol. 10612. doi: 10.1117/12.2304923.
[11]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Spin-VCSELs: opportunities and challenges’, presented at the European VCSEL Day, Ulm, Apr. 12, 2018, Published.
[12]
M. Lindemann et al., ‘Ultrafast birefringent spin-lasers’, in WINDS book of abstracts, Kohala Coast, Hawaii, 2018, pp. 148–149. [Online]. Available: https://www.winds-meeting.info/winds2018/wp-content/uploads/2018/12/WINDS-2018-Book-of-Abstracts-final.pdf
[13]
M. Lenz et al., ‘Classification of brain tissue with optical coherence tomography by employing texture analysis’, presented at the SPIE Photonics Europe, Stasbourg, 2018, Published.
[14]
G. Xu, N. C. Gerhardt, and I. Žutić, ‘Toward ultrafast spin lasers?’, in Bulletin of the American Physical Society, Los Angeles, CA, 2018, vol. 63, no. 1. [Online]. Available: https://meetings.aps.org/Meeting/MAR18/Session/V21.10
[15]
M. Lindemann, T. Pusch, R. Michalzik, M. R. Hofmann, and N. C. Gerhardt, ‘Ultrafast polarization dynamics in spin-lasers for optical data’, presented at the SPIE Optics + Photonics, San Diego, Calif., Aug. 21, 2018, Published.
[16]
N. C. Gerhardt et al., ‘Polarization modulation in spin lasers: challenges and prospects’, presented at the SPIE Optics + Photonics, San Diego, Calif., Aug. 21, 2018, Published.
[17]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Thermally induced birefringence tuning of VCSELs’, presented at the European VCSEL Day, Ulm, Apr. 12, 2018, Published.

2017

[1]
V. Besaga, N. C. Gerhardt, P. P. Maksimyak, and M. R. Hofmann, ‘Common-path holographic objective for conventional photographic camera’, in Novel Optical Systems Design and Optimization XX, San Diego, CA, 2017, vol. 10376. doi: 10.1117/12.2273890.
[2]
M. Finkeldey, L. Göring, C. Brenner, M. Hofmann, and N. C. Gerhardt, ‘Depth-filtering in common-path digital holographic microscopy’, Optics express, vol. 25, no. 16, pp. 19398–19407, Aug. 2017, doi: 10.1364/oe.25.019398.
[3]
M. Lenz et al., ‘Spectral domain optical coherence tomography for non-destructive testing of protection coatings on metal substrates’, Applied Sciences, vol. 7, no. 4, Art. no. 364, Apr. 2017, doi: 10.3390/app7040364.
[4]
M. N. Cherkashin, C. Brenner, W. D. Putro, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Dynamics of the photoacoustic response of single-element PZT transducers to pulse burst excitation’, in Photons Plus Ultrasound: Imaging and Sensing 2017, San Francisco, CA, 2017, vol. 10064. doi: 10.1117/12.2253051.
[5]
M. Finkeldey, L. Göring, F. Schellenberg, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging’, in Photonic Instrumentation Engineering IV, San Francisco, Calif., 2017, vol. 10110. doi: 10.1117/12.2250912.
[6]
M. Finkeldey, L. Göring, F. Schellenberg, N. C. Gerhardt, and M. Hofmann, ‘Backside imaging of a microcontroller with common-path digital holography’, in Practical holography XXXI: Materials and Applications, San Francisco, 2017, vol. 10127. doi: 10.1117/12.2250903.
[7]
L. Göring, M. Finkeldey, A. Ad­in­da-Oug­ba, N. C. Gerhardt, and M. Hofmann, ‘Lensless digital holographic microscope using in-line configuration and laser diode illumination’, in Practical holography XXXI: Materials and Applications, San Francisco, 2017, vol. 10127. doi: 10.1117/12.2250927.
[8]
M. Lenz et al., ‘Spectroscopic optical coherence tomography for ex vivo brain tumor analysis’, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, San Francisco, 2017, vol. 10054. doi: 10.1117/12.2252141.
[9]
M. N. Cherkashin, C. Brenner, W. D. Putro, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Linking transducer transfer function with multi-pulse excitation photoacoustic response’, in Medical Imaging 2017: Ultrasonic Imaging and Tomography, Orlando, Fla., 2017, vol. 10139. doi: 10.1117/12.2254577.
[10]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘High-frequency polarization dynamics in spin-lasers: pushing the limits’, in Spintronics X, San Diego, Calif., 2017, vol. 10357. doi: 10.1117/12.2272972.
[11]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Investigations on polarization oscillation amplitudes in spin-VCSELs’, in Vertical-Cavity Surface-Emitting Lasers XXI, San Francisco, Calif., 2017, vol. 10122. doi: 10.1117/12.2252490.
[12]
T. Pusch, E. La Tona, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence’, Applied physics letters, vol. 110, no. 15, Art. no. 151106, Apr. 2017, doi: 10.1063/1.4980025.
[13]
H. Welp et al., ‘Nondestructive evaluation of protective coatings for the conservation of industrial monuments’, in Optics for Arts, Architecture, and Archaeology VI, München, 2017, vol. 10331. doi: 10.1117/12.2270170.
[14]
L. Göring, M. Finkeldey, F. Schellenberg, C. Brenner, M. R. Hofmann, and N. C. Gerhardt, ‘Optical metrology for the investigation of buried technical structures’, Technisches Messen, vol. 85, no. 2, pp. 104–110, 2017, doi: 10.1515/teme-2017-0096.
[15]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Birefringence tuning in vertical cavity surface emitting lasers based on asymmetric hearing’, presented at the VCSEL Day , Cardiff, Wales, 2017, Published.
[16]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘Ultrafast polarization dynamics with resonance frequencies beyond 100 GHz in birefringent spinlasers’, presented at the Gordon Research Conference Spin Dynamics in Nanostructures - Science and Applications of Spin Textures and Spin Currents, Les Diablerets, 2017, Published.
[17]
M. Finkeldey, L. Schnitzler, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Layer sectioning in buried structures with common-path digital holography’, presented at the Congress of the International Commission for Optics, Tokyo , 2017, Published.
[18]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Tunable polarization oscillations in resonantly pumped spin-VCSELs’, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2017), München, 2017, p. 109. doi: 10.1109/cleoe-eqec.2017.8086350.
[19]
M. Lenz et al., ‘Brain tissue differentiation based on optical coherence tomography images using  texture features’, presented at the European Conference on Biomedical Optics, München, 2017, Published.
[20]
M. Finkeldey, L. Göring, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Digital holographic microscopy of buried specimen using a common-path reflective setup’, DGaO-Proceedings, vol. 118, Art. no. A7, 2017, [Online]. Available: https://www.dgao-proceedings.de/archiv/118_titel_d.php
[21]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘Ultrafast spin-VCSELs’, presented at the European Semiconductor Laser Workshop, Kongens Lyngby, Sep. 16, 2017, Published.

2016

[1]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘High-frequency operation of spin vertical-cavity surface-emitting lasers: towards 100 GHz’, in Spintronics IX, San Diego, Calif., Sep. 2016, vol. 9931. doi: 10.1117/12.2237163.
[2]
F. Schellenberg, M. Finkeldey, N. C. Gerhardt, M. R. Hofmann, A. Moradi, and C. Paar, ‘Large laser spots and fault sensitivity analysis’, in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2016), McLean, Va., 2016, pp. 203–208. doi: 10.1109/hst.2016.7495583.
[3]
T. Pusch, M. Bou Sanayeh, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Mich­al­zik, ‘Birefringence tuning of VCSELs’, in Semiconductor Lasers and Laser Dynamics VII, Brüssel, 2016, vol. 9892. doi: 10.1117/12.2228091.
[4]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘Birefringent vertical cavity surface-emitting lasers: toward high-speed spin-lasers’, in Semiconductor Lasers and Laser Dynamics VII, Brüssel, 2016, vol. 9892. doi: 10.1117/12.2229356.
[5]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Frequency tuning of polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers’, in Semiconductor Lasers and Laser Dynamics VII, Brüssel, 2016, vol. 9892. doi: 10.1117/12.2229358.
[6]
M. N. Cherkashin, C. Brenner, L. Göring, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Dynamics of double-pulse photoacoustic excitation’, in Photons Plus Ultrasound: Imaging and Sensing 2016, San Francisco, Calif., Mar. 2016, vol. 9708. doi: 10.1117/12.2213476.
[7]
M. Finkeldey, F. Schellenberg, N. C. Gerhardt, C. Paar, and M. Hofmann, ‘Common-path depth-filtered digital holography for high resolution imaging of buried semiconductor structures’, in Practical Holography XXX: Materials and Applications, San Francisco, Calif., 2016, vol. 9771. doi: 10.1117/12.2212454.
[8]
F. Schellenberg et al., ‘On the complexity reduction of laser fault injection campaigns using OBIC measurements’, in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC 2015, Saint Malo, Mar. 2016, pp. 14–27. doi: 10.1109/fdtc.2015.10.
[9]
M. Lindemann, N. C. Gerhardt, M. R. Hofmann, T. Pusch, and R. Michalzik, ‘Influence of birefringence splitting on ultrafast polarization oscillations in VCSELs’, in Vertical-cavity surface-emitting lasers XX, San Francisco, Calif., 2016, vol. 9766. doi: 10.1117/12.2212413.
[10]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Frequency tuning of polarization oscillations: Toward high-speed spin-lasers’, Applied physics letters, vol. 108, no. 4, Art. no. 042404, Jan. 2016, doi: 10.1063/1.4940713.
[11]
P. E. Faria Jr., G. Xu, J. Lee, N. C. Gerhardt, G. M. Sipahi, and I. Žutić, ‘Microscopic description of a spin laser’, in Bulletin of the American Physical Society, Baltimore, MD, 2016, vol. 61, no. 2. [Online]. Available: https://meetings.aps.org/Meeting/MAR16/Session/A5.14

2015

[1]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. Hofmann, and R. Michalzik, ‘Vertical-cavity surface-emitting lasers with birefringence splitting above 250 GHz’, Electronics letters, vol. 51, no. 20, pp. 1600–1601, Oct. 2015, doi: 10.1049/el.2015.2149.
[2]
A. Ad­in­da-Oug­ba, B. Kabir, N. Koukourakis, F. Mitschker, N. C. Gerhardt, and M. Hofmann, ‘Compact low-cost lensless digital holographic microscope for topographic measurements of microstructures in reflection geometry’, in Optical systems design 2015, Jena, Sep. 2015, vol. 9628, pp. 1–8. doi: 10.1117/12.2191073.
[3]
A. Ad­in­da-Oug­ba, N. Koukourakis, N. C. Gerhardt, and M. Hofmann, ‘Simple concept for a wide-field lensless digital holographic microscope using a laser diode’, Current directions in biomedical engineering, vol. 1, no. 1, pp. 261–264, Sep. 2015, doi: 10.1515/cdbme-2015-0065.
[4]
M. Lindemann, H. Höpfner, N. C. Gerhardt, M. Hofmann, T. Pusch, and R. Michalzik, ‘Controlled switching and frequency tuning of polarization oscillations in vertical-cavity surface-emitting lasers’, in Spintronics VIII, San Diego, Calif., Sep. 2015, vol. 9551, pp. 1–5. doi: 10.1117/12.2197970.
[5]
M. N. Cherkashin, C. Brenner, L. Schnitzler, B. Döpke, N. C. Gerhardt, and M. Hofmann, ‘Laser-diode-based photoacoustic setup to analyze Grüneisen relaxation-effect induced signal enhancement’, in Opto-acoustic methods and applications in biophotonics II, München, Jul. 2015, vol. 9539. doi: 10.1117/12.2183957.
[6]
A. Ad­in­da-Oug­ba, N. Koukourakis, A. Essaidi, N. C. Gerhardt, and M. Hofmann, ‘Quantitative phase imaging by wide field lensless digital holographic microscope’, in Optical methods for inspection, characterization, and imaging of biomaterials II, München, Jun. 2015, vol. 9529, p. 952903. doi: 10.1117/12.2184471.
[7]
P. E. F. Junior, G. Xu, J. Lee, N. C. Gerhardt, G. M. Sipahi, and I. Zutic, ‘Microscopic description of spin-lasers: from spin-dependent gain to high frequency operation’, presented at the Brazilian Workshop on Semiconductor Physics, Uberlândia, May 07, 2015, Published.
[8]
M. Lindemann, H. Höpfner, N. C. Gerhardt, M. R. Hofmann, T. Pusch, and R. Michalzik, ‘Ultrafast polarization dynamics with controlled polarization oscillations in vertical-cavity surface-emitting lasers’, in Vertical-cavity surface-emitting lasers XIX, San Francisco, Calif., Mar. 2015, vol. 9381, pp. 1–7. doi: 10.1117/12.2076920.
[9]
M. Lindemann, H. Höpfner, N. C. Gerhardt, M. R. Hofmann, T. Pusch, and R. Michalzik, ‘Towards high frequency operation of polarization oscillations in spin vertical-cavity surface-emitting lasers’, in Spintronics VIII, San Diego, Calif., 2015, vol. 9551. doi: 10.1117/12.2197969.
[10]
M. Lindemann, N. C. Gerhardt, M. Hofmann, T. Pusch, and R. Michalzik, ‘Tu­ning the fre­quen­cy of po­la­riza­t­i­on oscil­la­ti­ons in spin VC­SELs by me­cha­ni­cal strain in­duc­tion in GHz-ran­ge’, in The European Conference on Lasers and Electro-Optics 2015, München, 2015, Published.
[11]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. Hofmann, and R. Michalzik, ‘Increasing the birefringence of VCSELs beyond 250 GHz’, in The European Conference on Lasers and Electro-Optics 2015, München, 2015, Published.
[12]
P. E. Faria Junior, G. Xu, J. Lee, N. C. Gerhardt, G. M. Sipahi, and I. Zutic, ‘Toward high-frequency operation of spin lasers’, Physical review B, vol. 92, no. 7, Art. no. 075311, 2015, doi: 10.1103/physrevb.92.075311.

2014

[1]
N. C. Gerhardt, H. Höpfner, M. Lindemann, and M. R. Hofmann, ‘Polarization dynamics in spin-polarized vertical-cavity surface-emitting lasers’, in Spintronics VII, San Diego, Calif., Sep. 2014, vol. 9167, pp. 1–10. doi: 10.1117/12.2063723.
[2]
N. Koukourakis et al., ‘Employing electrically tunable lenses in confocal microscopy for axial scanning’, presented at the International Commission for Optics. Congress, Santiago de Compostela, Aug. 26, 2014, Published.
[3]
H. Höpfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, ‘Spin-controlled ultrafast vertical-cavity surface-emitting lasers’, in Semiconductor lasers and laser dynamics VI, Brüssel, May 2014, vol. 9134, pp. 1–6. doi: 10.1117/12.2049684.
[4]
N. Koukourakis et al., ‘Axial scanning in confocal microscopy employing adaptive lenses (CAL)’, Optics express, vol. 22, no. 5, pp. 6025–6039, Mar. 2014, doi: 10.1364/oe.22.006025.
[5]
H. Höpfner, M. Lindemann, N. C. Gerhardt, and M. Hofmann, ‘Coherent switching of polarization oscillations in vertical-cavity surface-emitting lasers’, in Vertical-cavity surface-emitting lasers XVIII, San Francisco, Calif., 2014, vol. 9001, pp. 9001–15. doi: 10.1117/12.2039196.
[6]
N. Koukourakis et al., ‘Effects of axial scanning in confocal microscopy employing adaptive lenses (CAL)’, in Optical micro- and nanometrology V, Brüssel, 2014, vol. 9132. doi: 10.1117/12.2052152.
[7]
H. Höpfner, M. Lindemann, N. C. Gerhardt, and M. Hofmann, ‘Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers’, Applied physics letters, vol. 104, no. 2, Art. no. 022409, 2014, doi: 10.1063/1.4862330.
[8]
V. Jaedicke et al., ‘Performance comparison of different metrics for spectroscopic optical coherence tomography’, in Biomedical applications of light scattering VIII, San Francisco, Calif., 2014, vol. 8952, pp. 1–10. doi: 10.1117/12.2038891.
[9]
V. Jädicke, S. Göbel, N. Koukourakis, N. C. Gerhardt, H. Welp, and M. R. Hofmann, ‘Multiwavelength phase unwrapping and aberration correction using depth filtered digital holography’, Optics letters, vol. 39, no. 14, pp. 4160–4163, 2014, doi: 10.1364/ol.39.004160.

2013

[1]
N. C. Gerhardt, ‘“More than Moore”: novel photonic concepts for information technology’, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2013.
[2]
V. Jaedicke, S. Agcaer, S. Goebel, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Contrast enhancement methods in optical coherence tomography using spectral features’, Biomedical engineering, vol. 58, no. Suppl. 1, Art. no. 4269, 2013, doi: 10.1515/bmt-2013-4269.
[3]
S. Goebel et al., ‘Quantitative phase analysis through scattering media by depth-filtered digital holography’, in Three-dimensional and multidimensional microscopy, San Francisco, Calif., 2013, vol. 8589, pp. 85891J-85891J–8. doi: 10.1117/12.2001159.
[4]
V. Jaedicke et al., ‘Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography’, Biomedical optics express, vol. 4, no. 12, pp. 2945–2961, 2013, doi: 10.1364/boe.4.002945.
[5]
N. C. Gerhardt et al., ‘Non-exponential photoluminescence transients in GaNAsP lattice matched to (001) silicon substrate’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2013, vol. 6. Reihe, Bd 48, no. 3. [Online]. Available:     https://www.dpg-verhandlungen.de/year/2013/conference/regensburg/downloads
[6]
M. Finkeldey et al., ‘Optical gain and lasing in GaNAsP/BGa(As)P heterostructures grown on (001) silicon substrate’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2013, vol. 6. Reihe, Bd 48, no. 3. [Online]. Available: https://www.dpg-verhandlungen.de/year/2013/conference/regensburg/downloads
[7]
N. C. Gerhardt et al., ‘Ultrafast spin-polarized vertical-cavity surface-emitting lasers’, in Spintronics VI, San Diego, Calif., 2013, vol. 8813, pp. 8313–80. doi: 10.1117/12.2022720.
[8]
V. Jaedicke et al., ‘Spectroscopic optical coherence tomography with graphics processing unit based analysis of three dimensional data sets’, in Biomedical applications of light scattering VII, San Francisco, Calif., 2013, vol. 8592, pp. 859215-1-859215–7. doi: 10.1117/12.2000464.
[9]
H. Höpfner et al., ‘Spin relaxation length in quantum dot spin LEDs’, Physica status solidi C, vol. 10, no. 9, pp. 1214–1217, 2013, doi: 10.1002/pssc.201200689.
[10]
H. Höpfner et al., ‘Spin injection, transport, and relaxation in spin light-emitting diodes: magnetic field effects’, in Spintronics VI, San Diego, Calif., 2013, vol. 8813, pp. 8813–43. doi: 10.1117/12.2023324.
[11]
H. Höpfner et al., ‘Spin injection and spin relaxation: magnetic field effects’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2013, vol. 6. Reihe, Bd 48, no. 3. [Online]. Available:     https://www.dpg-verhandlungen.de/year/2013/conference/regensburg/downloads
[12]
A. Ludwig et al., ‘Quantum dot spintronics: fundamentals and applications’, in Magnetic nanostructures, vol. 246, H. Zabel and M. Farle, Eds. Berlin: Springer, 2013, pp. 235–268. doi: 10.1007/978-3-642-32042-2_7.
[13]
K. Jandieri et al., ‘Nonexponential photoluminescence transients in a Ga(NAsP) lattice matched to a (001) silicon substrate’, Physical review B, vol. 87, no. 3, Art. no. 035303, Jan. 2013, doi: 10.1103/physrevb.87.035303.

2012

[1]
N. C. Gerhardt, M. Li, H. Jähme, H. Höpfner, T. Ackemann, and M. Hofmann, ‘Ultrafast spin-induced polarization oscillations in vertical-cavity surface-emitting lasers’, Jun. 01, 2012, Published.
[2]
H. Höpfner et al., ‘Room temperature spin relaxation in quantum dot based spin-optoelectronic devices’, in Ultrafast phenomena and nanophotonics XVI, San Francisco, Calif., 2012, vol. 8260, pp. 1–7. doi: 10.1117/12.907821.
[3]
H. Höpfner et al., ‘Magnetic field dependence of the spin relaxation length in spin light-emitting diodes’, Applied physics letters, vol. 101, no. 11, pp. 112402-1-112402–4, 2012, doi: 10.1063/1.4752162.
[4]
H. Soldat et al., ‘Erratum: “Room temperature spin relaxation length in spin light-emitting diodes”: [Appl. Phys. Lett. 99, 051102 (2011)]’, Applied physics letters, vol. 100, no. 26, pp. 269902–1, 2012, doi: 10.1063/1.4728990.
[5]
V. Jaedicke et al., ‘Signal processing for spectroscopic optical coherence tomography’, in Proceedings of the 7th International Workshop on Biosignal Interpretation (BSI2012), Como, It., 2012, pp. 224–227.
[6]
C. Fritsche et al., ‘Temperature dependence of the spin relaxation length in spin quantum dot LEDs’, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 6. Reihe, Bd 47, no. 4, 2012, [Online]. Available: https://www.dpg-verhandlungen.de/year/2012/conference/berlin/downloads
[7]
H. Höpfner et al., ‘Spin relaxation dynamics in spin-LEDs’, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 6. Reihe, Bd 47, no. 4, 2012, [Online]. Available: https://www.dpg-verhandlungen.de/year/2012/conference/berlin/downloads
[8]
V. Jaedicke et al., ‘System development for spectroscopic optical coherence tomography’, Biomedical engineering, vol. 57, no. Heft SI-1 Track-B, p. 327, 2012, doi: 10.1515/bmt-2012-4245.
[9]
S. Goebel, S. Agcaer, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Signal processing for spectroscopic optical coherence tomography’, Biomedical engineering, vol. 57, no. SI-1 Track-B, p. 328, 2012, doi: 10.1515/bmt-2012-4258.
[10]
N. Koukourakis et al., ‘Time-resolved photoluminescence and optical gain in Ga(NAsP) pseudomorphically grown on silicon’, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 6. Reihe, Bd 47, no. 4, 2012, [Online]. Available: https://www.dpg-verhandlungen.de/year/2012/conference/berlin/downloads
[11]
N. Koukourakis et al., ‘Photoluminescence and optical gain of Ga(NAsP) heterostructures pseudomorphically grown on silicon (001) substrate’, in Silicon photonics VII, San Francisco, Calif., 2012, vol. 8266, pp. 1–6. doi: 10.1117/12.907677.
[12]
N. Koukourakis et al., ‘High room-temperature optical gain in Ga(NAsP)/Si heterostructures’, Applied physics letters, vol. 100, no. 9, pp. 092107-1-092107–3, 2012, doi: 10.1063/1.3690886.
[13]
M. Li, T. Ackemann, N. C. Gerhardt, and M. Hofmann, ‘Analysis of birefringence controlled ultrafast polarization oscillations in spin vertical-cavity surface-emitting lasers’, in EOS annual meeting 2012 (EOSAM 2012), Aberdeen, 2012, pp. 104–107.
[14]
N. Koukourakis et al., ‘Depth-filtered digital holography’, Optics express, vol. 20, no. 20, pp. 22636–22648, 2012, doi: 10.1364/oe.20.022636.
[15]
N. C. Gerhardt and M. Hofmann, ‘Spin-controlled vertical-cavity surface-emitting lasers’, Advances in optical technologies, pp. 268949-1-268949–15, 2012, doi: 10.1155/2012/268949.
[16]
C.-S. Friedrich et al., ‘Photoacoustic blood oxygenation imaging based on semiconductor lasers’, Photonics and optoelectronics, vol. 1, no. 3, pp. 48–54, 2012, [Online]. Available: http://www.jpo-journal.org/Download.aspx?ID=4071
[17]
N. C. Gerhardt et al., ‘Time-resolved photoluminescence and optical gain in Ga(NAsP) heterostructures pseudomorphi-cally grown on silicon’, presented at the E-MRS 2012 Spring Meeting, Strasbourg, 2012, Published.
[18]
J. Volker et al., ‘System development for Spectroscopic Optical Coherence Tomography’, Biomedical engineering, vol. 57, pp. 327–327, Sep. 2012, doi: 10.1515/btm-2012-4245.

2011

[1]
V. Jaedicke, H. Wiethoff, C. T. Kasseck, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Spectroscopic Optical Coherence Tomography for substance differentiation’, presented at the International Symposium on Optical Coherence Tomography, Ilmenau, Sep. 13, 2011, Published.
[2]
H. Soldat et al., ‘Room temperature spin relaxation length in spin light-emitting diodes’, Applied physics letters, vol. 99, no. 5, Art. no. 051102, 2011, doi: 10.1063/1.3622662.
[3]
A. Ludwig et al., ‘Perpendicular spin injection and polarization features in InAs quantum dots’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2011, vol. 6. Reihe, Bd 46, no. 1. [Online]. Available: https://www.dpg-verhandlungen.de/year/2011/conference/dresden/downloads
[4]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, G. Schmitz, and A. Eder, ‘Ex­pe­ri­men­tal eva­lua­ti­on of mul­tis­pec­tral pho­toa­coustic coded ex­ci­ta­ti­on using or­tho­go­nal uni­po­lar golay codes’, in 442. Wilhelm und Else Heraeus-Seminar ‘Molecular Imaging’ in Bad Honnef, October 5th - 8th, 2009, 2011, Published.
[5]
M. Beckmann, M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Photoacoustic coded excitation using periodically perfect sequences’, in 2011 IEEE International Ultrasonics Symposium (IUS 2011), Orlando, Fla., 2011, pp. 1179–1182. doi: 10.1109/ultsym.2011.0290.
[6]
A. Ludwig et al., ‘Electrical spin injection in InAs quantum dots at room temperature and adjustment of the emission wavelength for spintronic applications’, Journal of crystal growth, vol. 323, no. 1, pp. 376–379, 2011, doi: 10.1016/j.jcrysgro.2010.09.087.
[7]
H. Soldat et al., ‘Remanent spin injection and spin relaxation in quantum dot light emitting diodes’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2011, vol. 6. Reihe, Bd 46, no. 1. [Online]. Available: https://www.dpg-verhandlungen.de/year/2011/conference/dresden/downloads
[8]
D. Grosse et al., ‘Single-shot holography with colliding pulse mode-locked lasers as light source’, in Quantum electronics conference & Lasers and electro-optics (CLEO/IQEC/Pacific Rim), 2011, 2011, pp. 1693–1695. doi: 10.1109/iqec-cleo.2011.6194017.
[9]
C.-S. Friedrich et al., ‘Quantitative photoacoustic blood oxygenation measurement of whole porcine blood samples using a multi-wavelength semiconductor laser system’, in Diffuse optical imaging III, München, 2011, vol. 8088, pp. 1–9. doi: 10.1117/12.889682.
[10]
D. Grosse et al., ‘Colliding pulse mode-locked lasers as light sources for single-shot holography’, in International Conference on Applications of Optics and Photonics, Braga, 2011, vol. 8001, pp. 1–6. doi: 10.1117/12.892185.
[11]
N. C. Gerhardt, M. Li, H. Jähme, H. Höpfner, T. Ackemann, and M. Hofmann, ‘Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers’, Applied physics letters, vol. 99, no. 15, pp. 151107-1-151107–3, 2011, doi: 10.1063/1.3651339.
[12]
N. C. Gerhardt et al., ‘Time-resolved photoluminescence and optical gain of Ga(NAsP) heterostructures pseudomorphically grown on silicon (001) substrate’, in 2011 13th International Conference on Transparent Optical Networks (ICTON 2011), Stockholm, 2011, pp. 111–114. doi: 10.1109/icton.2011.5970794.
[13]
N. C. Gerhardt et al., ‘Op­ti­cal gain in Ga(NAsP)/(BGa)((As)P) he­te­rost­ruc­tu­res pseu­do­mor­phi­cal­ly grown on Si(001) sub­stra­te’, in E-MRS 2010 Spring Meeting, 2011, Published.
[14]
N. Koukourakis et al., ‘Optical gain in GaNAsP heterostructures pseudomorphically grown on silicon’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2011, vol. 6. Reihe, Bd 46, no. 1. [Online]. Available: https://www.dpg-verhandlungen.de/year/2011/conference/dresden/downloads
[15]
M. Li, H. Jähme, H. Soldat, N. C. Gerhardt, M. R. Hofmann, and T. Ackemann, ‘Spin induced gigahertz polarization oscillations in vertical-cavity surface-emitting laser devices’, in Vertical-cavity surface-emitting lasers XV, San Francisco, Calif., 2011, vol. 7952, pp. 1–7. doi: 10.1117/12.873758.
[16]
N. Koukourakis et al., ‘Modal gain and time-resolved photoluminescence of Ga(NAsP) heterostructures pseudomorphically grown on silicon (001) substrate’, in Conference on Lasers and Electro-Optics (CLEO), 2011, Baltimore, Md., 2011, pp. 2720–2721. doi: 10.1364/cleo_at.2011.jtui86.
[17]
N. Koukourakis et al., ‘High modal gain in Ga(NAsP)/(BGa)((As)P) heterostructures grown lattice matched on (001) silicon’, in Gallium nitride materials and devices VI, 2011, vol. 7939, pp. 793927-1-793927–7. doi: 10.1117/12.873170.
[18]
N. Koukourakis et al., ‘Photorefractive two-wave mixing for image amplification in digital holography’, Optics express, vol. 19, no. 22, pp. 22004–22023, 2011, doi: 10.1364/oe.19.022004.
[19]
M. Li, H. Jähme, S. Hövel, A. Bischoff, N. C. Gerhardt, and M. Hofmann, ‘Spin dy­na­mics in ver­ti­cal-ca­vi­ty sur­face-emit­ting la­sers at room tem­pe­ra­tu­re’, in Semiconductor and Integrated Optoelectronics Conference, 2011, Published.

2010

[1]
N. C. Gerhardt, M. Li, H. Jähme, M. Hofmann, and T. Ackermann, ‘Gigahertz circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers’, presented at the International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors, Paderborn, Aug. 17, 2010, Published.
[2]
N. C. Gerhardt et al., ‘Properties of spin.​optoelectronic-devices’, presented at the Tutorial, International Research Training Group (IRTG) workshop New Materials – New Functionalities, Marburg, Jul. 05, 2010, Published.
[3]
N. C. Gerhardt et al., ‘Novel semiconductor based laser systems and devices’, presented at the German-American Frontiers of Engineering Symposium, Oak Ridge, Tenn., Apr. 23, 2010, Published.
[4]
C. T. Kasseck et al., ‘Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample’, Journal of biomedical optics, vol. 15, no. 4, p. 46019, 2010, doi: 10.1117/1.3477193.
[5]
M. Mienkina et al., ‘Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes’, Optics express, vol. 18, no. 9, pp. 9076–9087, 2010, doi: 10.1364/oe.18.009076.
[6]
V. Jaedicke, C. T. Kasseck, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Depth re­sol­ved sub­stan­ce iden­ti­fi­ca­ti­on using pat­tern re­co­gni­ti­on in spec­trosco­pic fre­quen­cy do­main op­ti­cal co­he­rence to­mo­gra­phy’, Biomedical engineering, vol. 55, no. S1, 2010.
[7]
N. C. Gerhardt, M. Li, H. Jähme, H. Soldat, M. Hofmann, and T. Ackemann, ‘Ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting laser devices’, in Physics and simulation of optoelectronic devices XVIII, 2010, vol. 7597, pp. 1–9. doi: 10.1117/12.841606.
[8]
M. Li, H. Jähme, H. Soldat, N. C. Gerhardt, M. Hofmann, and T. Ackemann, ‘Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices’, Applied physics letters, vol. 97, no. 19, pp. 191114-1-191114–3, 2010, doi: 10.1063/1.3515855.
[9]
C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Substance identification by depth resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography’, Optics communications, vol. 283, no. 23, pp. 4816–4822, 2010, doi: 10.1016/j.optcom.2010.06.073.
[10]
N. C. Gerhardt, M. Li, H. Jähme, H. Soldat, M. R. Hofmann, and T. Ackemann, ‘Gigahertz circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers’, in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010, San Jose, Calif., 2010, pp. 1–2. doi: 10.1364/cleo.2010.cme6.
[11]
C. Bückers et al., ‘Laser gain in dilute nitride Ga(NAsP) semiconductor quantum well structures on silicon substrate: a microscopic analysis’, in Fourth International Conference on Optical, Optoelectronic and Photonic Materials and Applications, 2010, Published.
[12]
M. Beckmann, M. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, ‘Monospectral photoacoustic imaging using Legendre sequences’, in 2010 IEEE International Ultrasonics Symposium (IUS), San Diego, Calif., 2010, pp. 386–389. doi: 10.1109/ultsym.2010.5935648.
[13]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, W. G. Wilkening, M. Hofmann, and G. Schmitz, ‘Experimental evaluation of photoacoustic coded excitation using unipolar golay codes’, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 7, pp. 1583–1593, 2010, doi: 10.1109/tuffc.2010.1588.
[14]
V. Jaedicke, C. T. Kasseck, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Substance identification in spectroscopic optical coherence tomograhpy using pattern recognition’, in Frontiers in optics, Rochester, NY, 2010, Published. doi: 10.1364/fio.2010.ftuy2.
[15]
N. C. Gerhardt et al., ‘Novel se­mi­con­duc­tor based laser sys­tems and de­vices’, in 13th German-American Frontiers of Engineering Symposium, 2010, Published.
[16]
H. Jähme, N. C. Gerhardt, M. Hofmann, M. Bülters, and D. Jäger, ‘Elec­tro-op­ti­cal mo­du­la­tor ar­rays for the ul­tra-fast spec­tral tu­ning of ex­ter­nal-ca­vi­ty diode la­sers’, in Semiconductor and Integrated Optoelectronics, 2010, Published.
[17]
R. Y. W. Lai et al., ‘Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy’, Journal of microelectromechanical systems, vol. 19, no. 5, pp. 1175–1179, 2010, doi: 10.1109/jmems.2010.2067442.
[18]
C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Frequency domain optical coherence tomography with subsequent depth resolved spectroscopic image analysis’, in Optical coherence tomography and coherence domain optical methods in biomedicine XIV, 2010, vol. 7544, pp. 7554–101. doi: 10.1117/12.840029.
[19]
H. Welp, V. Jaedicke, C. Kasseck, N. C. Gerhardt, and M. Hofmann, ‘Spec­tral pat­tern clas­si­fi­ca­ti­on in op­ti­cal co­he­rence to­mo­gra­phy’, in Crossing borders within the ABC, 2010, vol. 55, pp. 737–543.
[20]
N. Koukourakis, N. C. Gerhardt, M. Hofmann, and R. Y. W. Lai, ‘Photorefractive two-wave mixing for image amplification in digital holography’, in Frontiers in optics, Rochester, NY, 2010, Published.
[21]
E. U. Schuster et al., ‘Epitaxial growth and interfacial magnetism of spin aligner for remanent spin injection: [Fe/Tb]n/Fe/MgO/GaAs-light emitting diode as a prototype system’, Journal of applied physics, vol. 108, no. 6, Art. no. 063902, 2010, doi: 10.1063/1.3476265.
[22]
N. Koukourakis et al., ‘Modal gain analysis of GaNAsP heterostructures on silicon’, in Frontiers in optics, Rochester, NY, 2010, Published. doi: 10.1364/fio.2010.jwa56.
[23]
M. Li, N. C. Gerhardt, H. Jähme, M. Hofmann, and T. Ackemann, ‘Gi­ga­hertz cir­cu­lar po­la­riza­t­i­on oscil­la­ti­ons in spin-po­la­ri­zed ver­ti­cal-ca­vi­ty sur­face-emit­ting la­sers’, in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010, San Jose, Calif., 2010, Published.

2009

[1]
M. Li, H. Jähme, S. Hövel, A. Bischoff, N. C. Gerhardt, and M. Hofmann, ‘Spin dynamics in vertical-cavity surface-emitting lasers at room temperature’, presented at the Semiconductor and Integrated Optoelectronics Conference, Cardiff, Apr. 06, 2009, Published.
[2]
B. Kunert et al., ‘Lasing of lattice-matched Ga(NAsP) quantum well heterostructures monolithically integrated on (001) Si substrate’, presented at the Silicon Photonics, San Jose, Calif., Jan. 27, 2009, Published.
[3]
B. Kunert et al., ‘Lasing of the III/V compound semiconductor Ga(NAsP) integrated lattice-matched to Si substrate’, in Group IV Photonics, San Francisco, Calif., 2009, pp. 199–201. doi: 10.1109/group4.2009.5338394.
[4]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Multispectral photoacoustic coded excitation using orthogonal unipolar golay codes’, in Diagnostic imaging, München, 2009, vol. 2, pp. 217–220. doi: 10.1007/978-3-642-03879-2_61.
[5]
C. Kasseck et al., ‘Three-dimensional bone imaging: optical coherence tomography versus micro computer tomography’, in Optical coherence tomography and coherence techniques IV, München, 2009, vol. 7372, p. 73721B. doi: 10.1117/12.831814.
[6]
B. Kunert et al., ‘Op­ti­cal ve­ri­fi­ca­ti­on of gain in Ga(NAsP)/(BGa)(AsP) mul­ti-quan­tum-well he­te­rost­ruc­tu­res mo­no­li­thi­cal­ly grown lat­ti­ce-mat­ched on (001) si­li­con sub­stra­te’, Physica status solidi, vol. 6,6, 2009.
[7]
C. Lange et al., ‘Lasing in optically pumped Ga(NAsP)/(BGa)(AsP) heterstructures on Silicon’, in Conference on Lasers and Electro-Optics, 2009 and 2009 Quantum Electronics and Laser Science Conference, Baltimore, Md., 2009, pp. 1–2. doi: 10.1364/cleo.2009.ctuy2.
[8]
N. Koukourakis et al., ‘Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser’, Electronics letters, vol. 45, no. 1, pp. 46–48, 2009, doi: 10.1049/el:20092390.
[9]
N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. Hofmann, ‘Single-shot holography for depth resolved three dimensional imaging’, Optics express, vol. 17, no. 23, pp. 21015–21029, 2009, doi: 10.1364/oe.17.021015.
[10]
N. Koukourakis et al., ‘New concepts for depth resolved holographic imaging based on spectrally tunable diode lasers’, in Conference on Lasers and Electro-Optics, 2009 and 2009 Quantum Electronics and Laser Science Conference, Baltimore, Md., 2009, pp. 1253–1254. doi: 10.1364/cleo.2009.ctuaa2.
[11]
B. Kunert et al., ‘Laser operation of III/V compound material Ga(NAsP) grown lattice-matched on (001) Si substrate’, in Device Research Conference, Santa Barbara, Calif., 2009, pp. 193–194. doi: 10.1109/drc.2009.5354936.
[12]
M. Mienkina, A. Eder, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. Hofmann, ‘Feasibility study of multispectral photoacoustic coded excitation using orthogonal unipolar Golay codes’, in 2009 IEEE Ultrasonics Symposium, Rom, 2009, pp. 108–111. doi: 10.1109/ultsym.2009.5441941.
[13]
S. Hövel et al., ‘Spin-con­trol­led op­to­elec­tro­nic de­vices’, in Physica status solidi, Klink, 2009, vol. 6,2. doi: 10.1002/pssc.200880357.
[14]
C. Lange et al., ‘Gain characteristics and lasing of Ga(NAsP) multi-quantum well structures’, in Physica status solidi, Klink, 2009, vol. 6,2. doi: 10.1002/pssc.200880360.
[15]
N. C. Gerhardt et al., ‘Ultrafast spin dynamics in spin-polarized vertical-cavity surface-emitting laser devices’, in Conference on Lasers and Electro-Optics, 2009 and 2009 Quantum Electronics and Laser Science Conference, Baltimore, Md., 2009, pp. 696–697. doi: 10.1364/cleo.2009.cmrr6.
[16]
C.-S. Friedrich, M.-C. Wawreczko, M. Mienkina, N. C. Gerhardt, G. Schmitz, and M. Hofmann, ‘Compact semiconductor laser sources for photoacoustic imaging’, in Photons plus ultrasound, San Jose, Calif., 2009, vol. 7177, pp. 1–7. doi: 10.1117/12.809261.
[17]
N. Koukourakis et al., ‘New concepts for depth resolved holographic imaging’, in Digital holography and 3-D imaging, Vancouver, British Columbia, 2009, Published. doi: 10.1364/dh.2009.dmb6.
[18]
M. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent’, Biomedical engineering, vol. 54, no. 2, pp. 83–88, 2009, doi: 10.1515/bmt.2009.012.
[19]
M. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, ‘Comparison of coding techniques for photoacoustic coded excitation’, in Proceedings, Rotterdam, 2009, pp. 313–316. [Online]. Available: http://pub.dega-akustik.de/NAG_DAGA_2009/data/articles/000106.pdf
[20]
H. Jähme, M. Li, S. Hövel, N. C. Gerhardt, and M. Hofmann, ‘Spin-relaxation measurements in VCSEL-structures at room temperature’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2009, vol. 6. Reihe, Bd 44, no. 5. [Online]. Available: https://www.dpg-verhandlungen.de/year/2009/conference/dresden/downloads

2008

[1]
M. Li, H. Jähme, S. Hövel, N. C. Gerhardt, and M. Hofmann, ‘Room-temperature spin-optoelectronic devices’, presented at the International Workshop Spin phenomena in reduced dimension, Regensburg, Sep. 24, 2008, Published. [Online]. Available: http://www.physik.uni-regensburg.de/sfb689/Int_Workshop_2008/Posterliste.pdf
[2]
M. P. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Evaluation of simplex codes for photoacoustic coded excitation’, in 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerpen, 2008, vol. 22, pp. 444–447. doi: 10.1007/978-3-540-89208-3_105.
[3]
M. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Simulation study of photoacoustic coded excitation using Golay codes’, in IEEE Ultrasonics Symposium, 2008, Beijing, 2008, pp. 1242–1245. doi: 10.1109/ultsym.2008.0300.
[4]
B. Kunert et al., ‘Optical gain in Ga(NAsP)/(BGa)(AsP) multi-quantum-well heterostructures grown lattice-matched on (001) Silicon substrate’, in Device Research Conference, 2008, 2008, pp. 301–302. doi: 10.1109/drc.2008.4800849.
[5]
S. Hövel et al., ‘Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers’, Applied physics letters, vol. 92, no. 4, p. 41118, 2008, doi: 10.1063/1.2839381.
[6]
S. Hövel et al., ‘Electrical detection of photoinduced spins both at room temperature and in remanence’, Applied physics letters, vol. 92, no. 24, Art. no. 242102, 2008, doi: 10.1063/1.2948856.
[7]
B. Kunert et al., ‘Lasing of lattice-matched Ga(NAsP) quantum well heterostructures monolithically integrated on (001) Si substrate’, presented at the IEEE International Semiconductor Laser Conference, Sorrento, 2008, Published.
[8]
B. Kunert et al., ‘Monolithic integration of the novel GaP-based laser material Ga(NAsP) on (001) Si substrate without any dislocation formation’, presented at the E-MRS Spring Meeting, Straßburg, 2008, Published.
[9]
C. Lange et al., ‘Gain on si­li­con: mo­no­li­thic in­te­gra­ti­on of GaNAsP on Si’, presented at the International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors, Klink, 2008, Published.
[10]
S. Hövel et al., ‘Room-temperature spin-controlled optoelectronic devices’, in 2008 Conference on Lasers & Electro-Optics & Quantum Electronics and Laser Science Conference, San Jose, CA, 2008, pp. 1505–1506. doi: 10.1109/cleo.2008.4551689.
[11]
S. Hövel et al., ‘Room temperature electrical spin injection in remanence’, Applied physics letters, vol. 93, no. 2, Art. no. 021117, 2008, doi: 10.1063/1.2957469.

2007

[1]
C. Lange et al., ‘The variable stripe-length method revisited: Improved analysis’, Applied physics letters, vol. 91, no. 19, p. 191107, 2007, doi: 10.1063/1.2802049.
[2]
C. Kasseck, K. Lehmann, N. C. Gerhardt, and M. Hofmann, ‘Spectroscopic fourier domain optical coherence tomography’, in Optical coherence tomography and coherence techniques III, München, 2007, vol. 6627, pp. 1–9. doi: 10.1117/12.728416.
[3]
M. Mienkina et al., ‘Photoacoustic imaging of Fibrosarcoma using RGD-Cy 3 as a targeted contrast agent’, in IEEE Ultrasonics Symposium, 2007, New York City, NY, 2007, pp. 2409–2412. doi: 10.1109/ultsym.2007.606.
[4]
S. Hövel et al., ‘Spin-controlled LEDs and VCSELs’, Physica status solidi A, vol. 204, no. 2, pp. 500–507, 2007, doi: 10.1002/pssa.200673219.
[5]
M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, R. Höfling, and M. Hofmann, ‘External-cavity diode laser utilizing a micromirror device for spectral tuning’, in Optical measurement systems for industrial inspection V, München, 2007, vol. 6616, pp. 1–11. doi: 10.1117/12.726825.
[6]
M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Höfling, ‘Micromirror device controlled tunable diode laser’, Electronics letters, vol. 43, no. 8, pp. 456–457, 2007, doi: 10.1049/el:20073651.
[7]
M. Mienkina et al., ‘Evaluation eines kommerziellen Ultraschallgeräts für den Einsatz im photoakustischen Reflexionsmodus’, Biomedical engineering, vol. 52, no. S1, pp. G2-1, 2007.

2006

[1]
S. Borck et al., ‘Lasing in optically pumped Ga(NAsP)/GaP heterostructures’, Applied physics letters, vol. 89, no. 3, p. 31102, 2006, doi: 10.1063/1.2221907.
[2]
M. Mienkina et al., ‘Experimental characterization of ferucarbotran (Resovist ®) as a photoacoustic nanoparticle contrast agent’, in Proceedings, Vancouver, Kanada, 2006, pp. 393–396. doi: 10.1109/ultsym.2006.111.
[3]
N. C. Gerhardt, S. Hövel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, ‘Enhancement of spin information with vertical cavity surface emitting lasers’, Electronics letters, vol. 42, no. 2, pp. 88–89, 2006, doi: 10.1049/el:20062890.
[4]
S. Hövel, N. C. Gerhardt, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, ‘Spin dependent polarisation of optically pumped VCSELs’, in Special issue on semiconductor and integrated optoelectronics (SIOE), 2006, Published.
[5]
S. Hövel et al., ‘Spin-controlled vertical cavity surface-emitting lasers’, in Semiconductor lasers and laser dynamics II, Straßburg, 2006, vol. 6184, pp. 1–14. doi: 10.1117/12.662411.
[6]
N. C. Gerhardt et al., ‘Spin injection light-emitting diode with vertically magnetized ferromagnetic metal contacts’, Journal of applied physics, vol. 99, no. 7, Art. no. 073907, 2006, doi: 10.1063/1.2186376.
[7]
N. C. Gerhardt, ‘Optische Verstärkung und Spin-kontrollierte Emission von Halbleiterlasern: ’, Der Andere Verlag, Tönning , 2006.

2005

[1]
N. C. Gerhardt et al., ‘Elektrische Spininjektion über ferromagnetische Kontakte in LEDs im remanenten Zustand’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Berlin, 2005, vol. 40, no. 3. [Online]. Available: http://www.dpg-verhandlungen.de/year/2005/conference/berlin/part/hl/session/10/contribution/1
[2]
S. Hövel, N. C. Gerhardt, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, ‘Spin controlled optically pumped vertical cavity surface emitting laser’, Electronics letters, vol. 41, no. 5, pp. 251–253, 2005, doi: 10.1049/el:20057675.
[3]
S. Hövel, N. C. Gerhardt, J. Yang, D. Reuter, and A. Wieck, ‘Spinabhängige Polarisation eines optisch gepumpten VCSELs’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Berlin, 2005, vol. 40, no. 3. [Online]. Available: http://www.dpg-verhandlungen.de/year/2005/conference/berlin/part/hl/session/10/contribution/3
[4]
N. C. Gerhardt et al., ‘Spin-controlled LEDs and VCSELs’, in Physics and simulation of optoelectronic devices XIII, San José, Calif., 2005, vol. 5722, pp. 221–229. doi: 10.1117/12.590346.
[5]
N. C. Gerhardt et al., ‘Electron spin injection into GaAs from ferromagnetic contacts in remanence’, Applied physics letters, vol. 87, no. 3, Art. no. 032502, 2005, doi: 10.1063/1.1996843.

2004

[1]
N. C. Gerhardt and M. Hofmann, ‘Experimental analysis of the optical gain and linewidth enhancement factor of GaInNAs/GaAs lasers’, Journal of physics Condensed matter, vol. 16, no. 31, pp. S3095–S3106, 2004, doi: 10.1088/0953-8984/16/31/007.
[2]
N. C. Gerhardt, M. Hofmann, J. Hader, J. V. Moloney, S. W. Koch, and H. Riechert, ‘Linewidth enhancement factor and optical gain in (GaIn)(NAs)/GaAs lasers’, Applied physics letters, vol. 84, no. 1, pp. 1–3, 2004, doi: 10.1063/1.1638628.
[3]
S. Hövel, N. C. Gerhardt, M. R. Hofmann, J. Yang, D. Reuter, and A. Wieck, ‘Herstellung und Charakterisierung optisch gepumpter, oberflächenemittierender Halbleiterlaser’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, REgensburg, 2004, vol. 6. Reihe, Bd 39, no. 2. [Online]. Available: http://www.dpg-verhandlungen.de/year/2004/conference/regensburg/part/hl/session/12/contribution/1
[4]
M. Hofmann and N. C. Gerhardt, ‘Gain and emission dynamics of (GaIn)(NAs) lasers’, presented at the International Workshop on Metastable Compound Semiconductors and Heterostructure, Marburg, 2004, Published.

2003

[1]
N. C. Gerhardt et al., ‘Optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers: a comparison between theory and experiment’, in Special section on semiconductor optoelectronics, 2003, vol. 150,2.
[2]
N. C. Gerhardt and M. R. Hofmann, ‘Experimentelle Methoden zur Bestimmung der optischen Verstärkung von 1.3µm (GaIn)(NAs)/GaAs Halbleiterlasern’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2003, vol. 6. Reihe, Bd 38, no. 5. [Online]. Available: https://www.dpg-verhandlungen.de/year/2003/conference/dresden/part/hl/session/3/contribution/10
[3]
N. C. Gerhardt, M. Hofmann, and W. W. Rühle, ‘Optical spectroscopy of 1.3 μm (GaIn)(NAs)/GaAs lasers’, IEE proceedings Optoelectronics, vol. 150, no. 1, pp. 45–48, 2003, doi: 10.1049/ip-opt:20030035.
[4]
M. Hofmann and N. C. Gerhardt, ‘Gain and emission dynamics of dilute nitride quantum well lasers’, in Frontiers in Optics 2003, Tucson, Arizona, 2003, Published. doi: 10.1364/fio.2003.thn1.

2002

[1]
M. Hofmann et al., ‘Emission dynamics and optical gain of 1.3 \mum (GaIn)(NAs)/GaAs Lasers’, IEEE journal of quantum electronics / Institute of Electrical and Electronics Engineers, vol. 38, no. 2, pp. 213–221, 2002, doi: 10.1109/3.980275.
[2]
N. C. Gerhardt et al., ‘Influence of growth conditions on the optical gain of 1.3 /spl mu/m (GaIn)(NAs)/GaAs lasers’, in Conference digest, Garmisch-Partenkirchen, 2002, pp. 85–86. doi: 10.1109/islc.2002.1041130.

2001

[1]
N. C. Gerhardt et al., ‘Optische Verstärkung von (GaIn)(NAs)/GaAs Halbleiterlasern’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Hamburg, 2001, vol. 6. Reihe, Bd 36, no. 1. [Online]. Available: http://www.dpg-verhandlungen.de/year/2001/conference/hamburg/part/hl/session/34/contribution/3
[2]
M. Hofmann et al., ‘Gain of 1.3 μm (GaIn)(NAs)/GaAs lasers’, presented at the Workshop on novel gain materials, Würzburg, 2001, Published.
[3]
M. Hofmann et al., ‘Emission dynamics of (GaIn)(NAs)/GaAs lasers emitting at 1.3 μm’, in Physics and simulation of optoelectronic devices IX, San José, Calif., 2001, vol. 4283, pp. 256–266. doi: 10.1117/12.432573.
[4]
M. Hofmann et al., ‘Physics of 1.3µm (GaIn)(NAs)/GaAs semiconductor lasers’, in LEOS 2001, San Diego, CA, 2001, pp. 326–327. doi: 10.1109/leos.2001.969307.
[5]
M. Oestreich et al., ‘Spintronics: Spin electronics and optoelectronics in semiconductors’, in Advances in Solid State Physics 41, vol. 41, B. Krämer, Ed. Berlin: Springer, 2001, pp. 173–186. doi: 10.1007/3-540-44946-9_15.

2000

[1]
N. C. Gerhardt et al., ‘Emission dynamics and gain of (GaIn)(NAs)/GaAs lasers’, presented at the Microcavity and Photonics Workshop, Ascona, 2000, Published.

To top

To Top