Dr.-Ing. Carsten Brenner
Senior Researcher
Photonics and Terahertztechnology
Postal Address:
Ruhr-University Bochum
Faculty for Electrical Engineering an Information Technology
Photonics and Terahertztechnology
Postbox ID 16
Universitätsstraße 150
D-44801 Bochum
Room:
ID 04/328
Phone:
(+49)(0)234 / 32 - 23397
Fax:
(+49)(0)234 / 32 - 14167
E-Mail:
carsten.brenner@rub.de
2025
[1]
Y. Hu et al., ‘Coherent CW THz generation with a coupled‐cavity mini‐array VCSEL’, Electronics letters, vol. 61, no. 1, Jan. 2025, doi: 10.1049/ell2.70146.
[2]
L. C. Kreuzer et al., ‘Dispersive mirror based phase control in THz homodyne systems’, IEEE Transactions on Terahertz Science and Technology [ISSN: 2156-342X], p. 16, Feb. 2025, doi: 10.1109/tthz.2025.3539451.
[3]
L. C. Kreuzer et al., ‘Characterization of Monolithic Mode- Locked Ridge Waveguide Laser Diodes for THz ASOPS Application’, in 2024 IEEE Asia-Pacific Microwave Conference (APMC), Bali, Feb. 2025, Published. doi: 10.1109/apmc60911.2024.10867541.
[4]
P. Haas et al., ‘Diode Laser‐based generation of mode‐locked pulses at 1067 Nm (290 fs, 69 W Peak Power)’, Electronics letters, vol. 61, no. 1, Art. no. e70176, Feb. 2025, doi: 10.1049/ell2.70176.
[5]
N. Schulz, N. Surkamp, L. C. Kreuzer, C. Brenner, and M. R. Hofmann, ‘Photonic sources for compact CW-THz systems’, in 2025 International Conference on Mobile and Miniaturized Terahertz Systems (ICMMTS), Dubai , Mar. 2025, Published. doi: 10.1109/icmmts62835.2025.10926034.
[6]
L. C. Kreuzer, N. Schulz, N. Surkamp, C. Brenner, and M. R. Hofmann, ‘Sampling concepts for photonic THz homodyne systems’, in 2025 International Conference on Mobile and Miniaturized Terahertz Systems (ICMMTS), Dubai , Mar. 2025, Published. doi: 10.1109/icmmts62835.2025.10926010.
[7]
Y. Hu et al., ‘A coupled-cavity mini-array VCSEL for CW THz generation’, presented at the Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications, San Francisco, Jan. 27, 2025, Published.
[8]
Y. Hu et al., ‘A coupled-cavity mini-array VCSEL for CW THz generation’, in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVIII, San Francisco, Mar. 2025, vol. 13365. doi: 10.1117/12.3038996.
[9]
N. Schulz, N. Surkamp, L. C. Kreuzer, C. Brenner, and M. R. Hofmann, ‘Photonic sources for compact CW-THz systems’, presented at the International Conference on Mobile and Miniaturized Terahertz Systems (ICMMTS), Dubai, Feb. 24, 2025, Published.
[10]
L. C. Kreuzer, N. Schulz, N. Surkamp, C. Brenner, and M. R. Hofmann, ‘Sampling concepts for photonic THz homodyne systems’, presented at the International Conference on Mobile and Miniaturized Terahertz Systems (ICMMTS), Dubai, Feb. 24, 2025, Published.
2024
[1]
L. C. Kreuzer et al., ‘Dispersive mirrors for phase delay variation in THz-homodyne systems’, in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVII, San Francisco, Mar. 2024, vol. 12885. doi: 10.1117/12.2692885.
[2]
L. C. Kreuzer et al., ‘Dispersive mirrors for phase delay variation in THz-homodyne systems’, presented at the Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications, San Francisco, Mar. 11, 2024, Published.
[3]
N. Kleemann et al., ‘Investigation of passive mode-locking and self mode-locking in two-section monolithic QW and QD lasers’, presented at the Novel In-Plane Semiconductor Lasers XXIII, San Francisco, Mar. 13, 2024, Published.
[4]
N. Kleemann et al., ‘Investigation of passive mode-locking and self mode-locking in two-section monolithic QW and QD lasers’, in Novel In-Plane Semiconductor Lasers XXIII, San Francisco, Mar. 2024, vol. 12905. doi: 10.1117/12.3000196.
[5]
L. C. Kreuzer et al., ‘Influence of heavy metal contamination on THz transmission of plants’, in Proceedings of the 2024 15th German Microwave Conference, Duisburg, Apr. 2024, pp. 121–124. [Online]. Available: https://ieeexplore.ieee.org/document/10485348
[6]
N. Schulz, N. Surkamp, C. Brenner, and M. R. Hofmann, ‘Characterization of a photonic integrated circuit for CW THz measurements’, presented at the International conference on optical terahertz science and technology, Marburg, Apr. 11, 2024, Published.
[7]
N. Kleemann et al., ‘Self mode-locking and passive mode-locking in monolithic two-section InGaAsP/InP quantum well laser diode’, Optics express, vol. 32, no. 25, Art. no. 44659, Nov. 2024, doi: 10.1364/oe.537787.
[8]
N. Schulz et al., ‘Fast CW-THz system employing a dual mode Y-branch DFB laser’, presented at the Asia-Pacific Microwave Conference, Bali, Nov. 18, 2024, Published.
[9]
L. C. Kreuzer et al., ‘Characterization of Monolithic Mode-Locked Ridge Waveguide Laser Diodes for THz ASOPS Application’, presented at the Asia-Pacific Microwave Conference, Bali, 2024, Published.
[10]
N. Schulz et al., ‘Fast CW-THz System Employing a Dual Mode Y-Branch DFB Laser’, in 2024 IEEE Asia-Pacific Microwave Conference (APMC), Bali, Nov. 2024, pp. 67–69. doi: 10.1109/apmc60911.2024.10867651.
[11]
Y. Uçar et al., ‘Phase Noise of Optically Generated Terahertz Signals Employing an InP-based Photonic IC’, in 2024 24th International Conference on Transparent Optical Networks (ICTON), Bari, Sep. 2024, pp. 1–4. doi: 10.1109/icton62926.2024.10647609.
2023
[1]
J. Möller et al., ‘Accurate OCT-based diffuse adult-type glioma WHO grade 4 tissue classification using comprehensible texture feature analysis’, Biomedical signal processing and control, Art. no. 105047, Jun. 2023, Published, doi: 10.1016/j.bspc.2023.105047.
[2]
M. N. Cherkashin, V. Rohovets, C. Brenner, G. Schmitz, and M. R. Hofmann, ‘Reconfigurable transient ultrasound light waveguiding with a linear ultrasonic array’, in Optical manipulation and its applications, Vancouver, British Columbia Canada, Jun. 2023, Published. doi: 10.1364/boda.2023.jtu4b.22.
[3]
L. C. Kreuzer et al., ‘Terahertz-based heavy metal detection in plants : a first approach’, in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, Published. doi: 10.1109/iwmts58186.2023.10207784.
[4]
S. Gassel, M. R. Hofmann, and C. Brenner, ‘Impact of surface structures on THz reflection’, in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, 2023, Published. doi: 10.1109/iwmts58186.2023.10207862.
[5]
S. Gassel, M. R. Hofmann, and C. Brenner, ‘Impact of surface structures on THz reflection’, presented at the International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, 2023, Published.
[6]
N. Schulz, C. Brenner, N. Surkamp, L. C. Kreuzer, and M. R. Hofmann, ‘CW-THz system for high scan rate inline thickness measurements ’, presented at the IRMMW-THz , Montreal, Canada, 2023, Published.
[7]
N. Schulz, C. Brenner, L. C. Kreuzer, N. Surkamp, and M. R. Hofmann, ‘CW-THz system for high scan rate inline thickness measurements’, in 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, Oct. 2023, Published. doi: 10.1109/irmmw-thz57677.2023.10299105.
[8]
S. Gassel, M. R. Hofmann, and C. Brenner, ‘Influence of surface roughness on material classification for reflective THz-TDS measurements’, in 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, Oct. 2023, Published. doi: 10.1109/irmmw-thz57677.2023.10299106.
[9]
S. Gassel, M. R. Hofmann, and C. Brenner, ‘Influence of surface roughness on material classification for reflective THz-TDS measurements’, presented at the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, 2023, Published.
[10]
C. Brenner, N. Surkamp, and M. R. Hofmann, ‘Y-shaped tunable monolithic dual colour lasers for THz technology’, Advances in radio science, vol. 21, pp. 1–6, Dec. 2023, doi: 10.5194/ars-21-1-2023.
[11]
L. C. Kreuzer et al., ‘Towards the detection of heavy metals in plants using THz’, in 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, Oct. 2023, Published. doi: 10.1109/irmmw-thz57677.2023.10299050.
[12]
L. C. Kreuzer et al., ‘Terahertz-based heavy metal detection in plants : a first approach’, presented at the International Workshop on Mobile Terahertz Systems, Bonn, Aug. 10, 2023, Published. doi: 10.1109/iwmts58186.2023.10207784.
2022
[1]
J. Möller et al., ‘Tuning of optical coherence tomography texture features as a basis for tissue differentiation in glioblastoma samples’, in Optical coherence tomography and coherence domain optical methods in biomedicine XXVI, San Francisco, Mar. 2022, vol. 11948. doi: 10.1117/12.2609402.
[2]
J. Möller et al., ‘Tuning of optical coherence tomography texture features as a basis for tissue differentiation in glioblastoma samples’, presented at the SPIE BiOS, San Francisco, 2022, Published. doi: 10.1117/12.2609402.
[3]
S. T. Gassel, D. A. Azih, M. R. Hofmann, and C. Brenner, ‘Investigation of the influence of surface roughness on reflective THz measurements’, in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, Sep. 2022, Published. doi: 10.1109/irmmw-thz50927.2022.9895793.
[4]
M. R. Hofmann et al., ‘THz metrology with monolithic tunable two-color diode lasers’, in Terahertz Photonics II, Strasbourg, 2022, vol. 12134. doi: 10.1117/12.2626219.
[5]
M. R. Hofmann et al., ‘THz metrology with monolithic tunable two-color diode lasers’, presented at the Conference on Terahertz Photonics II, Strasbourg, 2022, Published.
[6]
M. R. Hofmann et al., ‘THz metrology with compact two colour diode laser’, in Kleinheubacher Tagung 2022, Miltenberg, 2022, pp. 12–12.
[7]
N. Surkamp et al., ‘Slotted Y-branch laser for cw-THz thickness measurements at 1 THz’, in Novel In-Plane Semiconductor Lasers XXI, San Francisco, Mar. 2022, vol. 12021. doi: 10.1117/12.2609787.
[8]
V. Cherniak et al., ‘A study of the usability of monolithically integrated photonic oscillators for wireless millimeter wave and terahertz communication’, in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, Sep. 2022, Published. doi: 10.1109/irmmw-thz50927.2022.9895519.
[9]
V. Cherniak et al., ‘On the tunability of mode locked laser diodes for use as local oscillators in photonic terahertz systems’, in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, Sep. 2022, Published. doi: 10.1109/irmmw-thz50927.2022.9895884.
[10]
N. Schulz, N. Surkamp, C. Brenner, and M. R. Hofmann, ‘Electronic timing control of mode-locked diode-lasers’, presented at the Semiconductor Integrated Opto-Electronics Conference (SIOE), Wales, UK, 2022, Published.
2021
[1]
L. Becke, A. Gerling, M. R. Hofmann, and C. Brenner, ‘Reduction of surface morphology influence on THz reflection time domain spectroscopy for material classification by using multiple observation angles’, in Terahertz, RF, millimeter, and submillimeter-wave technology and applications XIV, Online, Mar. 2021, vol. 11685. doi: 10.1117/12.2577607.
[2]
M. A. Alloush et al., ‘RF analysis of a sub-GHz InP-based 1550 nm monolithic mode-locked laser chip’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 33, no. 16, pp. 828–831, May 2021, doi: 10.1109/lpt.2021.3083096.
[3]
N. Surkamp et al., ‘Current tuned slotted Y‐branch laser for wafer thickness measurements with THz radiation’, Electronics letters, vol. 57, no. 24, pp. 936–938, Sep. 2021, doi: 10.1049/ell2.12314.
[4]
M. A. Alloush et al., ‘Passive- and self- mode-locking based ultrashort pulse generation in monolithic diode laser at 1550 nm’, in Novel In-Plane Semiconductor Lasers XX, Online, 2021, vol. 11705. doi: 10.1117/12.2583134.
[5]
M. A. Alloush, C. Brenner, C. Calò, and M. R. Hofmann, ‘Femtosecond pulse generation from external cavity diode laser based on self-mode-locking’, Optics letters, vol. 46, no. 2, pp. 344–347, Jan. 2021, doi: 10.1364/ol.415336.
2020
[1]
M. N. Cherkashin, C. Brenner, G. Schmitz, and M. R. Hofmann, ‘Transversally travelling ultrasound for light guiding deep into scattering media’, Communications Physics, vol. 3, no. 180, Oct. 2020, doi: 10.1038/s42005-020-00443-w.
[2]
M. A. Alloush et al., ‘Self-mode-locking and chirp compensation in an external cavity diode laser at 1550 nm’, in Semiconductor Lasers and Laser Dynamics IX, Online, 2020, vol. 11356. doi: 10.1117/12.2555946.
[3]
M. A. Alloush et al., ‘Comparison of self-mode-locking in monolithic and external cavity diode laser at 1550 nm’, in Novel in-plane semiconductor lasers XIX, San Francisco, Calif., 2020, vol. 11301. doi: 10.1117/12.2545780.
[4]
M. A. Alloush et al., ‘Amplitude noise and RF response analysis of 1 GHz mode-locked pulses from an InP-based laser chip at 1550 nm’, in 2020 IEEE Photonics Conference (IPC 2020), Online, 2020, pp. 346–347. doi: 10.1109/ipc47351.2020.9252313.
[5]
N. Surkamp et al., ‘Continuous wave THz system based on dual wavelength monolithic Y-Branch laser diode’, in 2020 22nd International Conference on Transparent Optical Networks (ICTON 2020), Online, Sep. 2020, pp. 944–947. doi: 10.1109/icton51198.2020.9203061.
[6]
M. N. Cherkashin, C. Brenner, G. Schmitz, and M. R. Hofmann, ‘Transient light waveguides deep into scattering media by transversal ultrasound’, in Clinical and Translational Biophotonics, Washington, DC, 2020, Published. doi: 10.1364/translational.2020.jth2a.15.
[7]
M. A. Alloush et al., ‘Femtosecond RMS timing jitter from 1 GHz InP on-chip mode-locked laser at 1550 nm’, in 2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR 2020), Sydney, 2020, pp. 382–383. doi: 10.1364/cleopr.2020.c4c_2.
[8]
M. A. Alloush et al., ‘Mode-locked diode laser as a source for two-photon microscopy’, presented at the European Semiconductor Laser Workshop, Eindhoven, Dec. 04, 2020, Published.
[9]
J. O. Gwaro, C. Brenner, L. S. Theurer, M. Maiwald, B. Sumpf, and M. R. Hofmann, ‘Continuous wave THz system based on an electrically tunable monolithic dual wavelength Y-Branch DBR diode laser’, Journal of infrared, millimeter, and terahertz waves, vol. 41, no. 5, pp. 568–575, Feb. 2020, doi: 10.1007/s10762-020-00676-4.
2019
[1]
N. Surkamp et al., ‘Mode-locked diode lasers for THz asynchronous optical sampling’, in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XII, San Francisco, 2019, vol. 10917. doi: 10.1117/12.2508396.
[2]
M. N. Cherkashin, C. Brenner, and M. R. Hofmann, ‘Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems’, Journal of biomedical optics, vol. 24, no. 04, Art. no. 046001, Apr. 2019, doi: 10.1117/1.jbo.24.4.046001.
[3]
N. Surkamp et al., ‘Hybrid mode-locking of diode lasers for asynchronous optical sampling of terahertz waves’, in French-German THz Conference FGTC, Kaiserslautern, 2019, Published.
[4]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Continuous wave THz source based on an electrically tunable monolithic two-color semiconductor diode laser’, presented at the CLEO/Europe-EQEC, 2019, Published.
[5]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Continuous wave THz source based on an electrically tunable monolithic two-color semiconductor diode laser’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2019), München, Oct. 2019, pp. 1539-. doi: 10.1109/cleoe-eqec.2019.8872901.
[6]
N. Surkamp et al., ‘Hybrid mode-locking of diode lasers for asynchronous optical sampling of terahertz waves’, presented at the French-German THz Conference (FGTC), Kaiserslautern, 2019, Published.
[7]
A. Gerling et al., ‘Monolithic mode-locked laser diode for THz communication’, in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, Oct. 2019, Published. doi: 10.1109/irmmw-thz.2019.8874373.
[8]
A. Gerling, L. Becke, S. Tonder, M. R. Hofmann, J. C. Balzer, and C. Brenner, ‘Golomb ruler based discrete frequency multimodal continuous wave THz spectroscopy system’, in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), Bad Neuenahr, Sep. 2019, Published. doi: 10.1109/iwmts.2019.8823651.
2018
[1]
M. N. Cherkashin, C. Brenner, and M. R. Hofmann, ‘High-resolution 3D light fluence mapping for heterogeneous scattering media by localized sampling’, Applied optics, vol. 57, no. 36, pp. 10441–10448, Dec. 2018, doi: 10.1364/ao.57.010441.
[2]
S. Dülme et al., ‘Phase delay of terahertz Fabry-Perot resonator characterized by a photonic two-tone spectroscopy system with self-heterodyne receiver’, in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, 2018, pp. 216–217. doi: 10.1109/irmmw-thz.2018.8510021.
[3]
S. Dülme et al., ‘Compact optoelectronic THz frequency domain spectroscopy system for refractive index determination based on Fabry-Perot effect’, in 2018 First International Workshop on Mobile Terahertz Systems (IWMTS 2018), Duisburg, 2018, pp. 6–10. doi: 10.1109/iwmts.2018.8454695.
[4]
N. Surkamp et al., ‘Terahertz time-domain spectroscopy by asynchronous sampling with modelocked semiconductor lasers’, in 2018 First International Workshop on Mobile Terahertz Systems (IWMTS 2018), Duisburg, 2018, pp. 72–75. doi: 10.1109/iwmts.2018.8454698.
[5]
A. Gerling, M. R. Hofmann, and C. Brenner, ‘High speed single point THz phase measurement based on dual channel lock-in technique’, in 2018 First International Workshop on Mobile Terahertz Systems (IWMTS 2018), Duisburg, 2018, pp. 48–50. doi: 10.1109/iwmts.2018.8454689.
[6]
B. Döpke et al., ‘Asynchronous sampling terahertz time-domain spectroscopy using semiconductor lasers’, Electronics letters, vol. 54, no. 10, pp. 640–641, 2018, doi: 10.1049/el.2018.0521.
[7]
M. A. Alloush et al., ‘Mode-locked diode laser with resonant ring amplifier’, in Semiconductor Lasers and Laser Dynamics VIII, Straßburg, 2018, vol. 10682. doi: 10.1117/12.2307220.
[8]
A. Gerling, S. Dülme, N. Schrinski, A. Stöhr, M. R. Hofmann, and C. Brenner, ‘Continuous wave multimode amplitude THz spectroscopy’, in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, 2018, pp. 1030-. doi: 10.1109/irmmw-thz.2018.8510486.
[9]
M. A. Alloush et al., ‘Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser’, in Novel In-Plane Semiconductor Lasers XVII, San Francisco, Calif., 2018, vol. 10553. doi: 10.1117/12.2290086.
[10]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Compact continuous wave THz source based on monolithic two-color laser diode’, in Nonlinear Optics and its Applications 2018, Straßburg, 2018, vol. 10684. doi: 10.1117/12.2306866.
[11]
A. Gerling, M. Hofmann, and C. Brenner, ‘High speed single point THz phase measurement based on dual channel lock-in technique’, presented at the International Workshop on Mobile THz Systems (IWMTS), Velen, 2018, Published.
[12]
C. Brenner et al., ‘Near infrared diode laser THz systems’, Advances in radio science, vol. 16, pp. 167–175, 2018, doi: 10.5194/ars-16-167-2018.
[13]
A. Gerling, S. Dülme, N. Schrinski, A. Stöhr, M. R. Hofmann, and C. Brenner, ‘Continuous wave multimode amplitude THz spectroscopy’, presented at the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 2018, Published.
[14]
A. Gerling, M. R. Hofmann, and C. Brenner, ‘High speed single point THz phase measurement based on dual channel lock-in technique’, presented at the International Workshop on Mobile Terahertz Systems (IWMTS), Velen, Deutschland, 2018, Published.
[15]
N. Surkamp et al., ‘Terahertz time-domain spectroscopy by asynchronous sampling with modelocked semiconductor lasers’, presented at the International Workshop on Mobile Terahertz Systems (IWMTS), Velen, Deutschland, 2018, Published.
[16]
M. A. Alloush et al., ‘Resonant pulse amplification based on mode-locked semiconductor lasers’, presented at the The Semiconductor and Integrated Opto-Electronics (SIOE) Conference, Cardiff, Wales, 2018, Published.
2017
[1]
M. Finkeldey, L. Göring, C. Brenner, M. Hofmann, and N. C. Gerhardt, ‘Depth-filtering in common-path digital holographic microscopy’, Optics express, vol. 25, no. 16, pp. 19398–19407, Aug. 2017, doi: 10.1364/oe.25.019398.
[2]
Y. Hu, B. Khani, C. Brenner, V. Rymanov, A. Stöhr, and M. Hofmann, ‘Two-color laser for THz generation with high speed photodiodes’, presented at the German Terahertz Conference, Bochum, Mar. 30, 2017, Published.
[3]
M. N. Cherkashin, C. Brenner, W. D. Putro, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Dynamics of the photoacoustic response of single-element PZT transducers to pulse burst excitation’, in Photons Plus Ultrasound: Imaging and Sensing 2017, San Francisco, CA, 2017, vol. 10064. doi: 10.1117/12.2253051.
[4]
M. Finkeldey, L. Göring, F. Schellenberg, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging’, in Photonic Instrumentation Engineering IV, San Francisco, Calif., 2017, vol. 10110. doi: 10.1117/12.2250912.
[5]
M. N. Cherkashin, C. Brenner, W. D. Putro, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Linking transducer transfer function with multi-pulse excitation photoacoustic response’, in Medical Imaging 2017: Ultrasonic Imaging and Tomography, Orlando, Fla., 2017, vol. 10139. doi: 10.1117/12.2254577.
[6]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Terahertz frequency generation with monolithically integrated dual wavelength distributed Bragg reflector semiconductor laser diode’, IET optoelectronics, vol. 11, no. 2, pp. 49–52, Feb. 2017, doi: 10.1049/iet-opt.2016.0054.
[7]
R. Pilny et al., ‘Femtosecond semiconductor laser system with resonator-internal dispersion adaptation’, Optics letters, vol. 42, no. 8, pp. 1524–1527, 2017, doi: 10.1364/ol.42.001524.
[8]
L. Göring, M. Finkeldey, F. Schellenberg, C. Brenner, M. R. Hofmann, and N. C. Gerhardt, ‘Optical metrology for the investigation of buried technical structures’, Technisches Messen, vol. 85, no. 2, pp. 104–110, 2017, doi: 10.1515/teme-2017-0096.
[9]
R. Pilny et al., ‘Self-optimizing passively, actively and hybridly mode-locked diode lasers’, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2017), München, 2017, p. 156. doi: 10.1109/cleoe-eqec.2017.8086397.
[10]
M. Finkeldey, L. Schnitzler, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Layer sectioning in buried structures with common-path digital holography’, presented at the Congress of the International Commission for Optics, Tokyo , 2017, Published.
[11]
Y. Hu, B. Khani, C. Brenner, V. Rymanov, A. Stohr, and M. R. Hofmann, ‘Compact CW THz spectroscopy system and its application in water absorption measurements’, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2017), München, 2017, p. 217. doi: 10.1109/cleoe-eqec.2017.8086458.
[12]
B. Khani, Y. Hu, V. Rymanov, C. Brenner, M. R. Hofmann, and A. Stöhr, ‘Compact optoelectronic continuous wave terahertz spectroscopy system (230–400 GHz) for paper sorting and characterization’, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2017), München, 2017, p. 212. doi: 10.1109/cleoe-eqec.2017.8086453.
[13]
M. Finkeldey, L. Göring, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Digital holographic microscopy of buried specimen using a common-path reflective setup’, DGaO-Proceedings, vol. 118, Art. no. A7, 2017, [Online]. Available: https://www.dgao-proceedings.de/archiv/118_titel_d.php
[14]
Y. Hu, B. Khani, C. Brenner, A. Stöhr, and M. R. Hofmann, ‘Tunable two-colour semiconductor laser for a compact CW THz spectroscopy system’, presented at the SIOE, Cardiff, Wales, 2017, Published.
[15]
J. O. Gwaro, C. Brenner, M. R. Hofmann, B. Sumpf, A. Klehr, and J. Fricke, ‘Generation of Terahertz radiation with monolithically integrated dual mode Distributed Bragg Reflector semiconductor diode laser’, presented at the German THz Conference, Bochum, Mar. 29, 2017, Published.
[16]
B. Döpke et al., ‘A mode-locked semiconductor laser based asynchronous sampling terahertz spectroscopy system’, presented at the German Terahertz Conference, Bochum, Mar. 29, 2017, Published.
[17]
Y. Hu, B. Khani, C. Brenner, V. Rymanov, A. Stöhr, and M. R. Hofmann, ‘Two-color laser for THz generation with high speed photodiodes’, presented at the German THz Conference, Bochum, 2017, Published.
[18]
M. R. Hofmann et al., ‘THz-sources and systems based on near infrared diode lasers’, in Tagungsprogramm, Zusammenfassung der Beiträge, Kleinheubacher Tagung 2017, 2017, p. 15.
2016
[1]
H. Jähme et al., ‘Recognition of pharmaceuticals with compact mini-Raman-spectrometer and automized pattern recognition algorithms’, in Optical Sensing and Detection IV, Brüssel, Aug. 2016, vol. 9899. doi: 10.1117/12.2228070.
[2]
J. O. Gwaro, C. Brenner, M. Hofmann, B. Sumpf, A. Klehr, and J. Fricke, ‘Terahertz wave generation from dual wavelength monolithic integrated distributed Bragg reflector semiconductor laser diode’, in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, pp. 11–14. doi: 10.1109/gemic.2016.7461543.
[3]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. Hofmann, ‘Terahertz difference frequency generation by a monolithic integrated dual mode distributed bragg reflector semiconductor diode laser’, presented at the International Workshop on Terahertz Technology and Applications, Kaiserslautern, Mar. 15, 2016, Published.
[4]
M. N. Cherkashin, C. Brenner, L. Göring, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Dynamics of double-pulse photoacoustic excitation’, in Photons Plus Ultrasound: Imaging and Sensing 2016, San Francisco, Calif., Mar. 2016, vol. 9708. doi: 10.1117/12.2213476.
[5]
R. Pilny et al., ‘Interaction of phase and amplitude shaping in an external cavity semiconductor laser’, in Novel In-Plane Semiconductor Lasers XV, San Francisco, Calif., 2016, vol. 9767. doi: 10.1117/12.2212906.
[6]
B. Döpke et al., ‘Timing jitter performance of mode-locked external cavity multi-quantum-well semiconductor lasers’, in Novel In-Plane Semiconductor Lasers XV, San Francisco, Calif., Mar. 2016, vol. 9767. doi: 10.1117/12.2213042.
[7]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Terahertz difference frequency generation by a monolithic integrated dual mode Distributed Bragg Reflector semiconductor diode laser’, in 7th International Workshop on Terahertz Technology and Applications, Kaiserslautern, 2016, Published.
2015
[1]
M. N. Cherkashin, C. Brenner, L. Schnitzler, B. Döpke, N. C. Gerhardt, and M. Hofmann, ‘Laser-diode-based photoacoustic setup to analyze Grüneisen relaxation-effect induced signal enhancement’, in Opto-acoustic methods and applications in biophotonics II, München, Jul. 2015, vol. 9539. doi: 10.1117/12.2183957.
[2]
J. C. Balzer et al., ‘Intracavity loss and dispersion managed mode-locked diode laser’, in 2015 Conference on Lasers and Electro-Optics (CLEO 2015), San José, Calif., May 2015, pp. 2048–2049. doi: 10.1364/cleo_si.2015.sm3f.1.
[3]
J. C. Balzer et al., ‘Passively mode-locked diode laser with optimized dispersion management’, IEEE journal of selected topics in quantum electronics / Institute of Electrical and Electronics Engineers, vol. 21, no. 6, pp. 16–23, Apr. 2015, doi: 10.1109/jstqe.2015.2418225.
[4]
B. Döpke et al., ‘Ultrashort pulse generation with semiconductor lasers using intracavity phase- and amplitude pulse shaping’, in Novel in-plane semiconductor lasers XIV, San Francisco, Calif., Mar. 2015, vol. 9382, pp. 1–5. doi: 10.1117/12.2079040.
[5]
R. Pilny, B. Döpke, C. Brenner, J. C. Balzer, and M. Hofmann, ‘Optimization of a mode-locked diode laser by manipulation of intracavity dispersion and absorption with an evolutionary algorithm: paper CB_P_21’, in The European Conference on Lasers and Electro-Optics 2015, München, 2015, Published.
[6]
B. Döpke et al., ‘Spectral broadening of mode-locked semiconductor lasers by resonator-internal pulse shaping: paper CB_10_4’, in 2015 European Quantum Electronics Conference, München, 2015, Published.
[7]
B. Döpke et al., ‘Self-optimizing femtosecond semiconductor laser’, Optics express, vol. 23, no. 8, pp. 9710–9716, 2015, doi: 10.1364/oe.23.009710.
[8]
B. Döpke et al., ‘Spectral broadening of mode-locked semiconductor lasers by resonatorinternal pulse shaping’, in The European Conference on Lasers and Electro-Optics 2015, München, 2015, Published.
2014
[1]
J. C. Balzer et al., ‘Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management’, Optics express, vol. 22, no. 15, pp. 18093–18100, 2014, doi: 10.1364/oe.22.018093.
2013
[1]
C. Brenner, H. Horstkemper, I. Cámara Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, ‘Colliding pulse modelocked lasers for terahertz photomixing’, in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO Europe/IQEC 2013), München, 2013, pp. 176–177. doi: 10.1109/cleoe-iqec.2013.6800754.
2012
[1]
C. Brenner, H. Horstkemper, I. Camara Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, ‘Terahertz picosecond pulse photomixing with colliding pulse modelocked lasers’, presented at the European Semiconductor Laser Workshop, Brüssel, Sep. 21, 2012, Published.
[2]
C.-S. Friedrich et al., ‘Photoacoustic blood oxygenation imaging based on semiconductor lasers’, Photonics and optoelectronics, vol. 1, no. 3, pp. 48–54, 2012, [Online]. Available: http://www.jpo-journal.org/Download.aspx?ID=4071
2011
[1]
N. Koukourakis et al., ‘Photorefractive two-wave mixing for image amplification in digital holography’, Optics express, vol. 19, no. 22, pp. 22004–22023, 2011, doi: 10.1364/oe.19.022004.
[2]
C. Brenner, C.-S. Friedrich, and M. Hofmann, ‘Semiconductor diode lasers for terahertz technology’, Journal of infrared, millimeter, and terahertz waves, vol. 32, no. 11, pp. 1253–1266, 2011, doi: 10.1007/s10762-011-9815-4.
[3]
C. Brenner and M. Hofmann, ‘Semiconductor laser based THz technology’, in Conference on Lasers and Electro-Optics (CLEO), 2011, Baltimore, Md., 2011, Published. doi: 10.1364/cleo_si.2011.cmff3.
[4]
C. Brenner and M. Hofmann, ‘Semiconductor laser based THz technology’, in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO Europe/EQEC 2011), München, 2011, Published.
2010
[1]
N. C. Gerhardt et al., ‘Properties of spin.optoelectronic-devices’, presented at the Tutorial, International Research Training Group (IRTG) workshop New Materials – New Functionalities, Marburg, Jul. 05, 2010, Published.
[2]
M. R. Hofmann, M. Scheller, C. Brenner, K. Baaske, and M. Koch, ‘Cost-effective THz spectroscopy with continuous-wave laser sources’, in 2010 proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, 2010, pp. 3134–3137. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5505354
[3]
C. Brenner et al., ‘Compact diode-laser-based system for continuous-wave and quasi-time-domain terahertz spectroscopy’, Optics letters, vol. 35, no. 23, pp. 3859–3861, 2010, doi: 10.1364/ol.35.003859.
[4]
C. Brenner et al., ‘Diode laser based THZ homodyne system for cw and quasi time domain spectroscopy’, in Laser Optics Berlin 2010, Berlin, 2010, Published.
[5]
C. Brenner and M. Hofmann, ‘New concepts for continuous wave and quasi time domain THz systems’, in EOS annual meeting 2010, Paris, 2010, pp. 198–199.
2009
[1]
C. Brenner et al., ‘Semiconductor laser based THz generation and detection’, in Physica status solidi, Klink, 2009, vol. 6,2. doi: 10.1002/pssc.200880356.
[2]
C.-S. Friedrich et al., ‘THz sources and detectors based on diode lasers’, in Nonlinear frequency generation and conversion: materials, devices and applications VIII, San Jose, Calif., 2009, vol. 7197, p. 71970B. doi: 10.1117/12.807853.
[3]
C. Brenner et al., ‘Versatile THz homodyn system based on an amplified laser diode in an external cavity’, in International Workshop on Terahertz Technology, 2009, Published.
[4]
C. Brenner, ‘Terahertz Technologie mit Diodenlasern: ’, Cuvillier Verlag, Göttingen, 2009.
2008
[1]
C. Brenner, S. Hoffmann, and M. Hofmann, ‘Interaction of semiconductor laser dynamics with THz radiation’, in Advances in Solid State Physics 47, Regensburg, 2008, vol. 47, pp. 179–190. doi: 10.1007/978-3-540-74325-5_15.
[2]
C.-S. Friedrich et al., ‘New two-color laser concepts for THz generation’, IEEE journal of selected topics in quantum electronics / Institute of Electrical and Electronics Engineers, vol. 14, no. 2, pp. 270–276, 2008, doi: 10.1109/jstqe.2007.912754.
2007
[1]
C. Brenner et al., ‘Detection of terahertz radiation with diode lasers’, Electronics letters, vol. 43, no. 16, pp. 870–872, 2007, doi: 10.1049/el:20071401.
[2]
M. Mienkina et al., ‘Photoacoustic imaging of Fibrosarcoma using RGD-Cy 3 as a targeted contrast agent’, in IEEE Ultrasonics Symposium, 2007, New York City, NY, 2007, pp. 2409–2412. doi: 10.1109/ultsym.2007.606.
[3]
S. Hövel et al., ‘Spin-controlled LEDs and VCSELs’, Physica status solidi A, vol. 204, no. 2, pp. 500–507, 2007, doi: 10.1002/pssa.200673219.
[4]
M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, R. Höfling, and M. Hofmann, ‘External-cavity diode laser utilizing a micromirror device for spectral tuning’, in Optical measurement systems for industrial inspection V, München, 2007, vol. 6616, pp. 1–11. doi: 10.1117/12.726825.
[5]
C. Brenner et al., ‘Detection of THz radiation with semiconductor diode lasers’, Applied physics letters, vol. 91, no. 10, p. 101107, 2007, doi: 10.1063/1.2783172.
[6]
M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Höfling, ‘Micromirror device controlled tunable diode laser’, Electronics letters, vol. 43, no. 8, pp. 456–457, 2007, doi: 10.1049/el:20073651.
[7]
M. Mienkina et al., ‘Evaluation eines kommerziellen Ultraschallgeräts für den Einsatz im photoakustischen Reflexionsmodus’, Biomedical engineering, vol. 52, no. S1, pp. G2-1, 2007.
[8]
C. Brenner, S. Hoffmann, and M. Hofmann, ‘Generation and detection of THz radiation with diode lasers’, in IET optoelectronics, 2007, vol. 2007,6.
[9]
S. Hoffmann, C. Brenner, M. Salhi, M. Koch, and M. R. Hofmann, ‘Semiconductor lasers for the generation and detection of THz radiation’, in 2007 joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Cardiff, 2007, pp. 850–851. doi: 10.1109/icimw.2007.4516761.
2006
[1]
S. Hövel et al., ‘Spin-controlled vertical cavity surface-emitting lasers’, in Semiconductor lasers and laser dynamics II, Straßburg, 2006, vol. 6184, pp. 1–14. doi: 10.1117/12.662411.
[2]
N. C. Gerhardt et al., ‘Spin injection light-emitting diode with vertically magnetized ferromagnetic metal contacts’, Journal of applied physics, vol. 99, no. 7, Art. no. 073907, 2006, doi: 10.1063/1.2186376.
[3]
C. Brenner, N. T. Le, S. Hoffmann, and M. Hofmann, ‘Room temperature terahertz generation with semiconductor lasers’, in Millimeter-wave and terahertz photonics, Straßburg, 2006, vol. 6194, pp. 1–8. doi: 10.1117/12.661909.
[4]
C. Brenner, S. Hoffmann, M. Hofmann, M. A. Salhi, and M. Koch, ‘Room-temperature terahertz detection with diode lasers’, in Technical digest CD-ROM, Long Beach, Calif., 2006, pp. 1–2. doi: 10.1109/cleo.2006.4628239.
[5]
M. Hofmann, C. Brenner, S. Hoffmann, and N. T. Le, ‘Diode laser based THz radiation sources’, in 9th European Conference on NDT, Berlin, 2006, vol. 103.
2005
[1]
N. C. Gerhardt et al., ‘Spin-controlled LEDs and VCSELs’, in Physics and simulation of optoelectronic devices XIII, San José, Calif., 2005, vol. 5722, pp. 221–229. doi: 10.1117/12.590346.
[2]
N. C. Gerhardt et al., ‘Electron spin injection into GaAs from ferromagnetic contacts in remanence’, Applied physics letters, vol. 87, no. 3, Art. no. 032502, 2005, doi: 10.1063/1.1996843.