Prof. Dr. Martin Hofmann

Chairholder

Pho­to­nics and Tera­hert­z ­Tech­no­lo­gy

Postal Address:
Ruhr-University Bochum
Faculty for Electrical Engineering and Informationtechnology
Photonics and Terahertztechnology
Postbox ID 16
Uni­ver­si­täts­stra­ße 150
D-44801 Bo­chum

Office hours:
at any time, preferably after a short consultation

Room:
ID 04/329

Phone:
(+49)(0)234 / 32 - 22259

Fax:
(+49)(0)234 / 32 - 14167

E-Mail:
martin.​hofmann@​rub.​de

Curriculum Vitae

  • since 2007: Head of the Chair for Photonics and Terahertz Technology at the RUB
  • 2001-2007: Head of the AG Optoelectronic Components and Materials (formerly: Materials in Microelectronics) at the RUB
  • 2000: Habilitation in experimental physics
  • 1996-2001: Scientific assistant in the physics department of the Philipps University of Marburg
  • 1995: Post-Doc as part of the EU's HumanCapital and Mibility program with research stays at University College Cork (Ireland), Fondazione Ugo Bordoni (Rome, Italy) and Tele Danmark Research (Hoersholm, Denmark)
  • 1994: Doctorate in the field of semiconductor lasers at the Philipps University of Marburg
  • 1991-1994: Research assistant in the semiconductor physics group at the Philipps University in Marburg
  • 1985-1991: Studied physics at the Philipps University in Marburg

Research focus

  • Optical characterisation of materials
  • Semiconductor lasers: characterisation, optimisation and new applications
  • Development of THz radiation sources
  • THz technology
  • Optical metrology for biomedical applications

2025

[1]
Y. Hu et al., ‘Coherent CW THz generation with a coupled‐cavity mini‐array VCSEL’, Electronics letters, vol. 61, no. 1, Jan. 2025, doi: 10.1049/ell2.70146.
[2]
L. C. Kreuzer et al., ‘Dispersive mirror based phase control in THz homodyne systems’, IEEE Transactions on Terahertz Science and Technology [ISSN: 2156-342X], p. 16, Feb. 2025, doi: 10.1109/tthz.2025.3539451.
[3]
L. C. Kreuzer et al., ‘Characterization of Monolithic Mode- Locked Ridge Waveguide Laser Diodes for THz ASOPS Application’, in 2024 IEEE Asia-Pacific Microwave Conference (APMC), Bali, Feb. 2025, Published. doi: 10.1109/apmc60911.2024.10867541.
[4]
P. Haas et al., ‘Diode Laser‐based generation of mode‐locked pulses at 1067 Nm (290 fs, 69 W Peak Power)’, Electronics letters, vol. 61, no. 1, Art. no. e70176, Feb. 2025, doi: 10.1049/ell2.70176.
[5]
N. Surkamp et al., ‘Compact diode laser-based system for multi-photon polymerization with conventional resins’, in Laser 3D Manufacturing XII, Mar. 2025, vol. 13354. doi: 10.1117/12.3043154.

2024

[1]
L. C. Kreuzer et al., ‘Dispersive mirrors for phase delay variation in THz-homodyne systems’, in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVII, San Francisco, Mar. 2024, vol. 12885. doi: 10.1117/12.2692885.
[2]
L. C. Kreuzer et al., ‘Dispersive mirrors for phase delay variation in THz-homodyne systems’, presented at the Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications, San Francisco, Mar. 11, 2024, Published.
[3]
N. Kleemann et al., ‘Investigation of passive mode-locking and self mode-locking in two-section monolithic QW and QD lasers’, presented at the Novel In-Plane Semiconductor Lasers XXIII, San Francisco, Mar. 13, 2024, Published.
[4]
N. Kleemann et al., ‘Investigation of passive mode-locking and self mode-locking in two-section monolithic QW and QD lasers’, in Novel In-Plane Semiconductor Lasers XXIII, San Francisco, Mar. 2024, vol. 12905. doi: 10.1117/12.3000196.
[5]
F. Behlau et al., ‘Two-photon polymerization with a 780 nm monolithic diode laser’, in Laser 3D Manufacturing XI, San Francisco, CA, Mar. 2024, vol. 12876. doi: 10.1117/12.3000493.
[6]
L. C. Kreuzer et al., ‘Influence of heavy metal contamination on THz transmission of plants’, in Proceedings of the 2024 15th German Microwave Conference, Duisburg, Apr. 2024, pp. 121–124. [Online]. Available: https://ieeexplore.ieee.org/document/10485348
[7]
N. Schulz, N. Surkamp, C. Brenner, and M. R. Hofmann, ‘Characterization of a photonic integrated circuit for CW THz measurements’, presented at the International conference on optical terahertz science and technology, Marburg, Apr. 11, 2024, Published.
[8]
N. Kleemann et al., ‘Self mode-locking and passive mode-locking in monolithic two-section InGaAsP/InP quantum well laser diode’, Optics express, vol. 32, no. 25, Art. no. 44659, Nov. 2024, doi: 10.1364/oe.537787.
[9]
N. Schulz et al., ‘Fast CW-THz system employing a dual mode Y-branch DFB laser’, presented at the Asia-Pacific Microwave Conference, Bali, Nov. 18, 2024, Published.
[10]
L. Zens, V. Besaga, J. Möller, N. C. Gerhardt, and M. R. Hofmann, ‘Holographic measurement of gain and linewidth enhancement factor in semiconductor waveguides’, Optics express, vol. 33, no. 1, pp. 34–49, Nov. 2024, doi: 10.1364/oe.538741.
[11]
L. C. Kreuzer et al., ‘Characterization of Monolithic Mode-Locked Ridge Waveguide Laser Diodes for THz ASOPS Application’, presented at the Asia-Pacific Microwave Conference, Bali, 2024, Published.
[12]
N. Schulz et al., ‘Fast CW-THz System Employing a Dual Mode Y-Branch DFB Laser’, in 2024 IEEE Asia-Pacific Microwave Conference (APMC), Bali, Nov. 2024, pp. 67–69. doi: 10.1109/apmc60911.2024.10867651.
[13]
Y. Uçar et al., ‘Phase Noise of Optically Generated Terahertz Signals Employing an InP-based Photonic IC’, in 2024 24th International Conference on Transparent Optical Networks (ICTON), Bari, Sep. 2024, pp. 1–4. doi: 10.1109/icton62926.2024.10647609.

2023

[1]
J. Möller et al., ‘Accurate OCT-based diffuse adult-type glioma WHO grade 4 tissue classification using comprehensible texture feature analysis’, Biomedical signal processing and control, Art. no. 105047, Jun. 2023, Published, doi: 10.1016/j.bspc.2023.105047.
[2]
S. Makhlouf et al., ‘Terahertz sources and receivers: From the past to the future’, IEEE journal of microwaves, 2023, Published, doi: 10.36227/techrxiv.23227130.v1.
[3]
M. Lindemann et al., ‘Polarization dynamics in spin‐VCSELs with integrated surface grating for high birefringence splitting’, Electronics letters, vol. 59, no. 13, Art. no. e12827, Jul. 2023, doi: 10.1049/ell2.12827.
[4]
M. N. Cherkashin, V. Rohovets, C. Brenner, G. Schmitz, and M. R. Hofmann, ‘Reconfigurable transient ultrasound light waveguiding with a linear ultrasonic array’, in Optical manipulation and its applications, Vancouver, British Columbia Canada, Jun. 2023, Published. doi: 10.1364/boda.2023.jtu4b.22.
[5]
L. C. Kreuzer et al., ‘Terahertz-based heavy metal detection in plants  : a first approach’, in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, Aug. 2023, Published. doi: 10.1109/iwmts58186.2023.10207784.
[6]
S. Gassel, M. R. Hofmann, and C. Brenner, ‘Impact of surface structures on THz reflection’, in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, 2023, Published. doi: 10.1109/iwmts58186.2023.10207862.
[7]
S. Gassel, M. R. Hofmann, and C. Brenner, ‘Impact of surface structures on THz reflection’, presented at the International Workshop on Mobile Terahertz Systems (IWMTS), Bonn, 2023, Published.
[8]
N. Schulz, C. Brenner, N. Surkamp, L. C. Kreuzer, and M. R. Hofmann, ‘CW-THz system for high scan rate inline thickness measurements ’, presented at the IRMMW-THz , Montreal, Canada, 2023, Published.
[9]
N. Schulz, C. Brenner, L. C. Kreuzer, N. Surkamp, and M. R. Hofmann, ‘CW-THz system for high scan rate inline thickness measurements’, in 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, Oct. 2023, Published. doi: 10.1109/irmmw-thz57677.2023.10299105.
[10]
S. Gassel, M. R. Hofmann, and C. Brenner, ‘Influence of surface roughness on material classification for reflective THz-TDS measurements’, in 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, Oct. 2023, Published. doi: 10.1109/irmmw-thz57677.2023.10299106.
[11]
S. Gassel, M. R. Hofmann, and C. Brenner, ‘Influence of surface roughness on material classification for reflective THz-TDS measurements’, presented at the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, 2023, Published.
[12]
N. Jung et al., ‘Elektrische Spin Injektion in kantenemittierenden Halbleiterlasern’, in MikroSystemTechnik Kongress 2023, Dresden, 2023, pp. 108–112.
[13]
C. Brenner, N. Surkamp, and M. R. Hofmann, ‘Y-shaped tunable monolithic dual colour lasers for THz technology’, Advances in radio science, vol. 21, pp. 1–6, Dec. 2023, doi: 10.5194/ars-21-1-2023.
[14]
L. C. Kreuzer et al., ‘Towards the detection of heavy metals in plants using THz’, in 2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, Oct. 2023, Published. doi: 10.1109/irmmw-thz57677.2023.10299050.
[15]
L. C. Kreuzer et al., ‘Towards the detection of heavy metals in plants using THz’, presented at the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Montreal, Oct. 31, 2023, Published. doi: 10.1109/irmmw-thz57677.2023.10299050.
[16]
L. C. Kreuzer et al., ‘Terahertz-based heavy metal detection in plants : a first approach’, presented at the International Workshop on Mobile Terahertz Systems, Bonn, Aug. 10, 2023, Published. doi: 10.1109/iwmts58186.2023.10207784.

2022

[1]
N. Heermeier et al., ‘Spin‐lasing in bimodal quantum dot micropillar cavities’, Laser & photonics reviews, vol. 2022, Art. no. 2100585, Feb. 2022, doi: 10.1002/lpor.202100585.
[2]
K. Neutsch, E. L. Gurevich, M. R. Hofmann, and N. C. Gerhardt, ‘Investigation of laser-induced periodic surface structures using synthetic optical holography’, Nanomaterials, vol. 13, no. 3, Art. no. 505, Feb. 2022, doi: 10.3390/nano12030505.
[3]
J. Möller et al., ‘Tuning of optical coherence tomography texture features as a basis for tissue differentiation in glioblastoma samples’, in Optical coherence tomography and coherence domain optical methods in biomedicine XXVI, San Francisco, Mar. 2022, vol. 11948. doi: 10.1117/12.2609402.
[4]
J. Möller et al., ‘Tuning of optical coherence tomography texture features as a basis for tissue differentiation in glioblastoma samples’, presented at the SPIE BiOS, San Francisco, 2022, Published. doi: 10.1117/12.2609402.
[5]
S. T. Gassel, D. A. Azih, M. R. Hofmann, and C. Brenner, ‘Investigation of the influence of surface roughness on reflective THz measurements’, in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, Sep. 2022, Published. doi: 10.1109/irmmw-thz50927.2022.9895793.
[6]
M. R. Hofmann et al., ‘THz metrology with monolithic tunable two-color diode lasers’, in Terahertz Photonics II, Strasbourg, 2022, vol. 12134. doi: 10.1117/12.2626219.
[7]
M. R. Hofmann et al., ‘THz metrology with monolithic tunable two-color diode lasers’, presented at the Conference on Terahertz Photonics II, Strasbourg, 2022, Published.
[8]
M. R. Hofmann, M. Lindemann, N. Jung, T. Pusch, R. Michalzik, and N. C. Gerhardt, ‘Can Spin-VCSELs open the bandwidth bottleneck?’, presented at the European Semiconductor Laser Workshop 2022 | ESLW 2022, Neuchatel, 2022, Published.
[9]
M. R. Hofmann et al., ‘THz metrology with compact two colour diode laser’, in Kleinheubacher Tagung 2022, Miltenberg, 2022, pp. 12–12.
[10]
N. Surkamp et al., ‘Slotted Y-branch laser for cw-THz thickness measurements at 1 THz’, in Novel In-Plane Semiconductor Lasers XXI, San Francisco, Mar. 2022, vol. 12021. doi: 10.1117/12.2609787.
[11]
M. R. Hofmann and S. W. Koch, ‘Semiconductor lasers’, in Springer handbook of semiconductor devices, 1st ed., M. Rudan, S. Rossella Brunetti, and S. Reggiani, Eds. Cham: Springer International Publishing, 2022, pp. 851–864. doi: 10.1007/978-3-030-79827-7_23.
[12]
V. Cherniak et al., ‘A study of the usability of monolithically integrated photonic oscillators for wireless millimeter wave and terahertz communication’, in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, Sep. 2022, Published. doi: 10.1109/irmmw-thz50927.2022.9895519.
[13]
V. Cherniak et al., ‘On the tunability of mode locked laser diodes for use as local oscillators in photonic terahertz systems’, in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, Sep. 2022, Published. doi: 10.1109/irmmw-thz50927.2022.9895884.
[14]
N. Heermeier et al., ‘Spin lasing in high-beta bimodal quantum dot micropillar cavities ’, in Spintronics XV, San Diego, Oct. 2022, vol. 12205. doi: 10.1117/12.2632687.
[15]
N. Schulz, N. Surkamp, C. Brenner, and M. R. Hofmann, ‘Electronic timing control of mode-locked diode-lasers’, presented at the Semiconductor Integrated Opto-Electronics Conference (SIOE), Wales, UK, 2022, Published.

2021

[1]
N. Jung et al., ‘Investigations on polarization dynamics of birefringent spin-VCSELs’, in Vertical-Cavity Surface-Emitting Lasers XXV, 2021, vol. 11704. doi: 10.1117/12.2577488.
[2]
N. Jung, M. Lindemann, T. Pusch, R. Michalzik, M. R. Hofmann, and N. C. Gerhardt, ‘Integrated spin-lasers for ultrafast polarization modulation’, in Spintronics XIV, San Diego, 2021, vol. 11805. doi: 10.1117/12.2594560.
[3]
T. Heuser et al., ‘Spin lasing in bimodal quantum dot micropillar cavities’, in Spintronics XIV, San Diego, 2021, vol. 11805. doi: 10.1117/12.2596029.
[4]
L. Becke, A. Gerling, M. R. Hofmann, and C. Brenner, ‘Reduction of surface morphology influence on THz reflection time domain spectroscopy for material classification by using multiple observation angles’, in Terahertz, RF, millimeter, and submillimeter-wave technology and applications XIV, Online, Mar. 2021, vol. 11685. doi: 10.1117/12.2577607.
[5]
J. Möller et al., ‘Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases’, International journal of computer assisted radiology and surgery, vol. 16, no. 9, pp. 1517–1526, May 2021, doi: 10.1007/s11548-021-02412-2.
[6]
M. A. Alloush et al., ‘RF analysis of a sub-GHz InP-based 1550 nm monolithic mode-locked laser chip’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 33, no. 16, pp. 828–831, May 2021, doi: 10.1109/lpt.2021.3083096.
[7]
N. Surkamp et al., ‘Current tuned slotted Y‐branch laser for wafer thickness measurements with THz radiation’, Electronics letters, vol. 57, no. 24, pp. 936–938, Sep. 2021, doi: 10.1049/ell2.12314.
[8]
V. Besaga, N. C. Gerhardt, and M. R. Hofmann, ‘Digital holography for spatially resolved analysis of the semiconductor optical response ’, Applied optics, vol. 60, no. 4, pp. A15–A20, 2021, doi: 10.1364/ao.402488.
[9]
L. Schnitzler et al., ‘Lensless digital holographic microscopy as an efficient method to monitor enzymatic plastic degradation’, Marine pollution bulletin, vol. 163, Art. no. 111950, 2021, doi: 10.1016/j.marpolbul.2020.111950.
[10]
M. A. Alloush et al., ‘Passive- and self- mode-locking based ultrashort pulse generation in monolithic diode laser at 1550 nm’, in Novel In-Plane Semiconductor Lasers XX, Online, 2021, vol. 11705. doi: 10.1117/12.2583134.
[11]
N. Jung et al., ‘Investigations on polarization dynamics of birefringent spin-VCSELs’, in Novel In-Plane Semiconductor Lasers XX, Online, 2021, vol. 11705. doi: 10.1117/12.2577488.
[12]
N. Jung, M. Lindemann, T. Pusch, R. Michalzik, M. R. Hofmann, and N. C. Gerhardt, ‘Ultrafast spin lasers’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Online, 2021, vol. 6. Reihe, Bd 56, no. 7. [Online]. Available: https://www.dpg-verhandlungen.de/year/2021/conference/skm/part/hl/session/7/contribution/1
[13]
N. C. Gerhardt, N. Jung, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘Ultrafast spin lasers’, in Bulletin of the American Physical Society, Online, 2021, vol. 66, no. 1. [Online]. Available: https://meetings.aps.org/Meeting/MAR21/Session/S36.2
[14]
M. A. Alloush, C. Brenner, C. Calò, and M. R. Hofmann, ‘Femtosecond pulse generation from external cavity diode laser based on self-mode-locking’, Optics letters, vol. 46, no. 2, pp. 344–347, Jan. 2021, doi: 10.1364/ol.415336.
[15]
N. Jung, M. Lindemann, T. Pusch, R. Michalzik, M. R. Hofmann, and N. C. Gerhardt, ‘Integrated spin-lasers for ultrafast polarization modulation’, presented at the Spintronics , San Diego, 2021, Published.

2020

[1]
G. Zyla et al., ‘Two-photon polymerization with diode lasers emitting ultrashort pulses with high repetition rate’, Optics letters, vol. 45, no. 17, pp. 4827–4830, Aug. 2020, doi: 10.1364/ol.401738.
[2]
N. Surkamp et al., ‘Mode-locked diode lasers as sources for two-photon polymerization’, in 3D printed optics and additive photonic manufacturing II, 2020, vol. 11349. doi: 10.1117/12.2555890.
[3]
M. Lindemann et al., ‘Bias current and temperature dependence of polarization dynamics in spin-lasers with electrically tunable birefringence’, AIP Advances / American Institute of Physics, vol. 10, no. 3, Art. no. 035211, Mar. 2020, doi: 10.1063/1.5139199.
[4]
M. N. Cherkashin, C. Brenner, G. Schmitz, and M. R. Hofmann, ‘Transversally travelling ultrasound for light guiding deep into scattering media’, Communications Physics, vol. 3, no. 180, Oct. 2020, doi: 10.1038/s42005-020-00443-w.
[5]
N. Jung et al., ‘Investigation of the polarization state in spin-VCSELs with thermally tuned birefringence’, in Semiconductor Lasers and Laser Dynamics IX, Online, 2020, vol. 11356. doi: 10.1117/12.2555395.
[6]
T. Pusch et al., ‘Integrated surface gratings in VCSELs for high birefringence splitting’, in Semiconductor Lasers and Laser Dynamics IX, Online, 2020, vol. 11356. doi: 10.1117/12.2554703.
[7]
M. Lindemann et al., ‘Intensity and polarization dynamics in ultrafast birefringent spin-VCSELs’, in Spintronics XIII, Online, 2020, vol. 11470. doi: 10.1117/12.2567628.
[8]
T. Pusch, M. Lindemann, N. Jung, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Manipulation of birefringence in spin-VCSELs’, in Spintronics XIII, Online, 2020, vol. 11470. doi: 10.1117/12.2567336.
[9]
M. A. Alloush et al., ‘Self-mode-locking and chirp compensation in an external cavity diode laser at 1550 nm’, in Semiconductor Lasers and Laser Dynamics IX, Online, 2020, vol. 11356. doi: 10.1117/12.2555946.
[10]
M. A. Alloush et al., ‘Comparison of self-mode-locking in monolithic and external cavity diode laser at 1550 nm’, in Novel in-plane semiconductor lasers XIX, San Francisco, Calif., 2020, vol. 11301. doi: 10.1117/12.2545780.
[11]
I. Ortlepp et al., ‘Tip- and laser-based nanofabrication up to 100 mm with sub-nanometre precision’, in Novel patterning technologies for semiconductors, 2020, vol. 11324. doi: 10.1117/12.2551044.
[12]
V. Besaga, N. C. Gerhardt, and M. R. Hofmann, ‘Digital holography for evaluation of the refractive index distribution externally induced in semiconductors’, in Practical Holography XXXIV: Displays, materials, and applications, San Francisco, Calif., 2020, vol. 11306. doi: 10.1117/12.2544160.
[13]
V. Besaga, N. C. Gerhardt, and M. R. Hofmann, ‘Inspection of semiconductor-based planar wave-guiding structures with a near-infrared transmission digital holographic microscopy’, in Fourteenth International Conference on Correlation Optics, Černivci, 2020, vol. 11369. doi: 10.1117/12.2553911.
[14]
J. Möller et al., ‘In vivo imaging of human peripheral nerves using optical coherence tomography compared to histopathology slices’, in Optical coherence tomography and coherence domain optical methods in biomedicine XXIV, San Francisco, Feb. 2020, vol. 11228. doi: 10.1117/12.2544801.
[15]
L. Schnitzler, K. Neutsch, F. Schellenberg, M. R. Hofmann, and N. C. Gerhardt, ‘Confocal laser scanning holographic microscopy of buried structures’, Applied optics, vol. 60, no. 4, pp. A8–A14, Oct. 2020, doi: 10.1364/ao.403687.
[16]
M. A. Alloush et al., ‘Amplitude noise and RF response analysis of 1 GHz mode-locked pulses from an InP-based laser chip at 1550 nm’, in 2020 IEEE Photonics Conference (IPC 2020), Online, 2020, pp. 346–347. doi: 10.1109/ipc47351.2020.9252313.
[17]
N. Surkamp et al., ‘Continuous wave THz system based on dual wavelength monolithic Y-Branch laser diode’, in 2020 22nd International Conference on Transparent Optical Networks (ICTON 2020), Online, Sep. 2020, pp. 944–947. doi: 10.1109/icton51198.2020.9203061.
[18]
I. Žutić et al., ‘Spin-lasers: spintronics beyond magnetoresistance’, Solid state communications, vol. 316–317, Art. no. 113949, 2020, doi: 10.1016/j.ssc.2020.113949.
[19]
I. Žutić, G. Xu, M. Lindemann, P. E. Faria Jun., M. R. Hofmann, and N. C. Gerhardt, ‘Putting spin into photonics’, presented at the Quantum Sensing and Nano Electronics and Photonics (Part of SPIE Photonics West), San Francisco, Calif., Feb. 03, 2020, Published.
[20]
K. Neutsch, L. Schnitzler, J. Sun, M. J. Tranelis, M. R. Hofmann, and N. C. Gerhardt, ‘In-depth particle localization with common-path digital holographic microscopy’, in Practical Holography XXXIV: Displays, materials, and applications, San Francisco, Calif., 2020, vol. 11306. doi: 10.1117/12.2545925.
[21]
L. Schnitzler, N. Kleemann, K. Neutsch, M. R. Hofmann, and N. C. Gerhardt, ‘Holographic imaging of particles with Lloyd’s mirror interferometer’, in Digital Holography and Three-Dimensional Imaging, Online, 2020, Published. doi: 10.1364/dh.2020.hth4h.5.
[22]
M. Lindemann et al., ‘Ultrafast spin-lasers’, in PQE-2020, Snowbird, Utah, 2020, p. 196.
[23]
M. Lindemann et al., ‘Ultrafast polarization modulation in birefringent spin-VCSELs’, presented at the Quantum Sensing and Nano Electronics and Photonics (Part of SPIE Photonics West), San Francisco, Calif., Feb. 03, 2020, Published.
[24]
M. N. Cherkashin, C. Brenner, G. Schmitz, and M. R. Hofmann, ‘Transient light waveguides deep into scattering media by transversal ultrasound’, in Clinical and Translational Biophotonics, Washington, DC, 2020, Published. doi: 10.1364/translational.2020.jth2a.15.
[25]
M. A. Alloush et al., ‘Femtosecond RMS timing jitter from 1 GHz InP on-chip mode-locked laser at 1550 nm’, in 2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR 2020), Sydney, 2020, pp. 382–383. doi: 10.1364/cleopr.2020.c4c_2.
[26]
M. A. Alloush et al., ‘Mode-locked diode laser as a source for two-photon microscopy’, presented at the European Semiconductor Laser Workshop, Eindhoven, Dec. 04, 2020, Published.
[27]
J. O. Gwaro, C. Brenner, L. S. Theurer, M. Maiwald, B. Sumpf, and M. R. Hofmann, ‘Continuous wave THz system based on an electrically tunable monolithic dual wavelength Y-Branch DBR diode laser’, Journal of infrared, millimeter, and terahertz waves, vol. 41, no. 5, pp. 568–575, Feb. 2020, doi: 10.1007/s10762-020-00676-4.
[28]
L.-A. Bartsch et al., ‘Ex vivo tissue analysis of metastases from different tumour entities using optical coherence tomography’, presented at the Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), 2020, Published. doi: 10.3205/20dgnc339.
[29]
J. Möller et al., ‘In vivo imaging of human peripheral nerves using optical coherence tomography compared to histopathology slices’, presented at the SPIE BIOS, San Francisco, 2020, Published.
[30]
T. Pusch et al., ‘Integrated surface gratings in VCSELs for high birefringence splitting’, presented at the Semiconductor Lasers and Laser Dynamics, online, 2020, Published.
[31]
T. Pusch, M. Lindemann, N. Jung, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Manipulation of birefringence in spin-VCSELs’, presented at the Spintronics, online, 2020, Published.
[32]
M. Lindemann et al., ‘Intensity and polarization dynamics in ultrafast birefringent spin-VCSELs’, presented at the Spintronics, online, 2020, Published.

2019

[1]
M. Lindemann et al., ‘Ultrafast spin-lasers’, Nature, vol. 568, no. 7751, pp. 212–215, Apr. 2019, doi: 10.1038/s41586-019-1073-y.
[2]
N. Surkamp et al., ‘Mode-locked diode lasers for THz asynchronous optical sampling’, in Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XII, San Francisco, 2019, vol. 10917. doi: 10.1117/12.2508396.
[3]
K. Neutsch, L. Schnitzler, N. Kleemann, M. R. Hofmann, and N. C. Gerhardt, ‘Ho­lo­gra­phic ima­ging of par­ti­cles using Lloyd’s mir­ror con­fi­gu­ra­ti­on’, in Face2Phase, Delft, 2019, Published.
[4]
V. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Digital holographic microscopy for sub-µm scale high aspect ratio structures in transparent materials’, Optics and lasers in engineering, vol. 121, pp. 441–447, 2019, doi: 10.1016/j.optlaseng.2019.05.007.
[5]
V. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Monitoring of photochemically induced changes in phase-modulating samples with digital holographic microscopy’, Applied optics, vol. 58, no. 34, pp. G41–G47, 2019, doi: 10.1364/ao.58.000g41.
[6]
M. N. Cherkashin, C. Brenner, and M. R. Hofmann, ‘Transducer-matched multipulse excitation for signal-to-noise ratio improvement in diode laser-based photoacoustic systems’, Journal of biomedical optics, vol. 24, no. 04, Art. no. 046001, Apr. 2019, doi: 10.1117/1.jbo.24.4.046001.
[7]
L. Schnitzler, M. Finkeldey, M. R. Hofmann, and N. C. Gerhardt, ‘Contrast enhancement for topographic imaging in confocal laser scanning microscopy’, Applied Sciences, vol. 9, no. 15, Art. no. 3086, Jul. 2019, doi: 10.3390/app9153086.
[8]
N. Surkamp et al., ‘Hybrid mode-locking of diode lasers for asynchronous optical sampling of terahertz waves’, in French-German THz Conference FGTC, Kaiserslautern, 2019, Published.
[9]
A. Carolus et al., ‘Comparison between optical coherence tomography imaging and histological sections of peripheral nerves’, Journal of neurosurgery, vol. 134, no. 1, pp. 270–277, Nov. 2019, doi: 10.3171/2019.8.jns191278.
[10]
T. Pusch et al., ‘Vertical‐cavity surface‐emitting laser with integrated surface grating for high birefringence splitting’, Electronics Letters [ISSN: 0013-5194], vol. 55, no. 19, p. 10551057, Jul. 2019, doi: 10.1049/el.2019.1441.
[11]
M. Lenz et al., ‘Analysis of in vivo optical coherence tomography images of human peripheral nerves using texture analysis’, in Clinical and Preclinical Optical Diagnostics II, München, 2019, vol. 11073. doi: 10.1117/12.2526755.
[12]
V. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Near real-time digital holographic imaging on conventional central processing unit’, in Optical Measurement Systems for Industrial Inspection XI, München, 2019, vol. 11056. doi: 10.1117/12.2526112.
[13]
K. Neutsch, L. Schnitzler, M. J. Tranelis, M. R. Hofmann, and N. C. Gerhardt, ‘Three-dimensional particle localization with common-path digital holographic microscopy’, in Practical Holography XXXIII: Displays, Materials, and Applications, San Francisco, CA, 2019, vol. 10944. doi: 10.1117/12.2509448.
[14]
N. Jung et al., ‘Polarization dynamics of a VCSEL with thermally tuned birefringence’, presented at the European Semiconductor Laser Workshop (ESLW), Cork, Sep. 27, 2019, Published.
[15]
V. R. Besaga, N. C. Gerhardt, and M. R. Hofmann, ‘Inspection of semiconductor-based planar wave-guiding structures with a near-infrared transmission digital holographic microscopy’, presented at the The Fourteenth International Conference on Correlation Optics, Chernivtsi, Ukraine , 2019, Published.
[16]
T. Pusch, P. Debernardi, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Birefringent surface gratings for ultrafast spin-VCSELs’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2019), München, 2019, p. 1265. doi: 10.1109/cleoe-eqec.2019.8873122.
[17]
T. Pusch, P. Debernardi, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Birefringent Surface Gratings for Ultrafast SpinVCSELs’, presented at the Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2019, München, 2019, Published.
[18]
V. R. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Near real-time digital holographic imaging on conventional central processing unit’, presented at the SPIE Optical Measurement Systems for Industrial Inspection , München, 2019, Published.
[19]
M. Lindemann et al., ‘Ultrafast spin-lasers for optical data communication’, presented at the Conference on Lasers and Electro-Optics Europe, München, 2019, Published.
[20]
M. Lindemann et al., ‘Ultrafast spin-lasers for optical data communication’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2019), München, 2019, p. 526. doi: 10.1109/cleoe-eqec.2019.8873073.
[21]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Continuous wave THz source based on an electrically tunable monolithic two-color semiconductor diode laser’, presented at the CLEO/Europe-EQEC, 2019, Published.
[22]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Continuous wave THz source based on an electrically tunable monolithic two-color semiconductor diode laser’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2019), München, Oct. 2019, pp. 1539-. doi: 10.1109/cleoe-eqec.2019.8872901.
[23]
V. Besaga, A. Saetchnikov, N. C. Gerhardt, A. Ostendorf, and M. R. Hofmann, ‘Performance evaluation of digital holographic microscopy for rapid inspection’, presented at the Digital holography and three-dimensional imaging, Bordeaux, France, 2019, Published.
[24]
T. Pusch, P. Debernardi, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Integrated surface gratings for high defined birefringence in VCSELs’, presented at the European VCSEL Day, Brüssel, 2019, Published.
[25]
M. Lindemann et al., ‘Ultrafast Spin-VCSELs and optical data communication’, presented at the European VCSEL Day, Brüssel, 2019, Published.
[26]
N. Jung et al., ‘An approach towards spin-injected edge-emitting semiconductor lasers’, presented at the SIOE, Cardiff, 2019, Published.
[27]
N. Surkamp et al., ‘Hybrid mode-locking of diode lasers for asynchronous optical sampling of terahertz waves’, presented at the French-German THz Conference (FGTC), Kaiserslautern, 2019, Published.
[28]
M. Holz et al., ‘Atomic force microscope integrated into a scanning electron microscope for fabrication and metrology at the nanometer scale’, in Photomask technology 2019, 2019, vol. 11148. doi: 10.1117/12.2537018.
[29]
S. Supreeti et al., ‘Integrated soft UV-nanoimprint lithography in a nanopositioning and nanomeasuring machine for accurate positioning of stamp to substrate’, in Novel patterning technologies for semiconductors, 2019, vol. 10958. doi: 10.1117/12.2514832.
[30]
J. Möller et al., ‘In vivo investigation of peripheral nerves using optical coherence tomography and texture analysis’, presented at the INTERPHOTONICS - International Conference on Photonics Research, Antalya, Nov. 06, 2019, Published.
[31]
L. Schnitzler, K. Neutsch, M. R. Hofmann, and N. C. Gerhardt, ‘Common-path digital holographic microscopy for non-destructive testing’, in Face2Phase, Delft, 2019, Published.
[32]
M. Lindemann et al., ‘Ultrafast spin-VCSELs and optical data communication’, presented at the VCSEL Day, Brüssel, May 09, 2019, Published.
[33]
N. C. Gerhardt, M. R. Hofmann, and M. Lindemann, ‘Vorrichtung zur Injektion spinpolarisierter Ladungsträger und zur Reflexion von Licht’, DE102018105345A1
[34]
N. C. Gerhardt et al., ‘Ultrafast spin-lasers for high-speed optical communication’, presented at the Quantum Sensing and Nano Electronics and Photonics, San Francisco, CA, Feb. 07, 2019, Published.
[35]
T. Pusch, P. Debernardi, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Integrated surface gratings for high defined birefringence in VCSELs’, presented at the VCSEL-Day, Brüssel, May 09, 2019, Published.
[36]
A. Gerling et al., ‘Monolithic mode-locked laser diode for THz communication’, in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, Oct. 2019, Published. doi: 10.1109/irmmw-thz.2019.8874373.
[37]
A. Gerling, L. Becke, S. Tonder, M. R. Hofmann, J. C. Balzer, and C. Brenner, ‘Golomb ruler based discrete frequency multimodal continuous wave THz spectroscopy system’, in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), Bad Neuenahr, Sep. 2019, Published. doi: 10.1109/iwmts.2019.8823651.
[38]
N. C. Gerhardt, M. R. Hofmann, and M. Lindemann, ‘Device for injecting spin-polarized charge carriers and for reflecting light’, US201916978757
[39]
M. Lenz et al., ‘Analysis of in vivo optical coherence tomography images of human peripheral nerves using texture analysis’, presented at the Clinical and Preclinical Optical Diagnostics, München, 2019, Published.
[40]
A. Carolus, M. Lenz, M. R. Hofmann, H. Welp, K. Schmieder, and C. Brenke, ‘High-resolution in vivo imaging of peripheral nerves using optical coherence tomography: a feasibility study’, Journal of neurosurgery, vol. 132, no. 6, pp. 1907–1913, Apr. 2019, doi: 10.3171/2019.2.jns183542.

2018

[1]
M. N. Cherkashin, C. Brenner, and M. R. Hofmann, ‘High-resolution 3D light fluence mapping for heterogeneous scattering media by localized sampling’, Applied optics, vol. 57, no. 36, pp. 10441–10448, Dec. 2018, doi: 10.1364/ao.57.010441.
[2]
S. Dülme et al., ‘Phase delay of terahertz Fabry-Perot resonator characterized by a photonic two-tone spectroscopy system with self-heterodyne receiver’, in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, 2018, pp. 216–217. doi: 10.1109/irmmw-thz.2018.8510021.
[3]
S. Dülme et al., ‘Compact optoelectronic THz frequency domain spectroscopy system for refractive index determination based on Fabry-Perot effect’, in 2018 First International Workshop on Mobile Terahertz Systems (IWMTS 2018), Duisburg, 2018, pp. 6–10. doi: 10.1109/iwmts.2018.8454695.
[4]
N. Surkamp et al., ‘Terahertz time-domain spectroscopy by asynchronous sampling with modelocked semiconductor lasers’, in 2018 First International Workshop on Mobile Terahertz Systems (IWMTS 2018), Duisburg, 2018, pp. 72–75. doi: 10.1109/iwmts.2018.8454698.
[5]
A. Gerling, M. R. Hofmann, and C. Brenner, ‘High speed single point THz phase measurement based on dual channel lock-in technique’, in 2018 First International Workshop on Mobile Terahertz Systems (IWMTS 2018), Duisburg, 2018, pp. 48–50. doi: 10.1109/iwmts.2018.8454689.
[6]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Electrical birefringence tuning of VCSELs’, in Vertical-Cavity Surface-Emitting Lasers XXII, San Francisco, Calif., 2018, vol. 10552. doi: 10.1117/12.2295917.
[7]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. Hofmann, ‘Demonstrating ultrafast polarization dynamics in spin-VCSELs’, in Vertical-Cavity Surface-Emitting Lasers XXII, San Francisco, Calif., 2018, vol. 10552. doi: 10.1117/12.2289560.
[8]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Spin lasers for optical data communication’, in Semiconductor Lasers and Laser Dynamics VIII, Straßburg, 2018, vol. 10682. doi: 10.1117/12.2306464.
[9]
T. Pusch, S. Scherübl, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Thermally-induced birefringence in VCSELs: approaching the limits’, in Semiconductor Lasers and Laser Dynamics VIII, Straßburg, 2018, vol. 10682. doi: 10.1117/12.2306215.
[10]
M. Lenz et al., ‘Brain tissue analysis using texture features based on optical coherence tomography images’, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXII, San Francisco, CA, 2018, vol. 10483. doi: 10.1117/12.2292032.
[11]
M. Lenz et al., ‘Classification of brain tissue with optical coherence tomography by employing texture analysis’, in Optics, Photonics, and Digital Technologies for Imaging Applications V, Strasbourg, 2018, vol. 10679. doi: 10.1117/12.2307701.
[12]
L. Göring, M. R. Hofmann, N. C. Gerhardt, and M. Finkeldey, ‘Digital holography for the investigation of buried structures with a common-path reflection microscope’, in Practical Holography XXXII: Displays, Materials, and Applications, San Francisco, 2018, vol. 10558. doi: 10.1117/12.2289524.
[13]
V. Besaga, N. C. Gerhardt, P. P. Maksimyak, and M. R. Hofmann, ‘A direct-view customer-oriented digital holographic camera’, in Thirteenth International Conference on Correlation Optics, Černivci, 2018, vol. 10612. doi: 10.1117/12.2304923.
[14]
B. Döpke et al., ‘Asynchronous sampling terahertz time-domain spectroscopy using semiconductor lasers’, Electronics letters, vol. 54, no. 10, pp. 640–641, 2018, doi: 10.1049/el.2018.0521.
[15]
M. A. Alloush et al., ‘Mode-locked diode laser with resonant ring amplifier’, in Semiconductor Lasers and Laser Dynamics VIII, Straßburg, 2018, vol. 10682. doi: 10.1117/12.2307220.
[16]
A. Gerling, S. Dülme, N. Schrinski, A. Stöhr, M. R. Hofmann, and C. Brenner, ‘Continuous wave multimode amplitude THz spectroscopy’, in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), Nagoya, 2018, pp. 1030-. doi: 10.1109/irmmw-thz.2018.8510486.
[17]
M. A. Alloush et al., ‘Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser’, in Novel In-Plane Semiconductor Lasers XVII, San Francisco, Calif., 2018, vol. 10553. doi: 10.1117/12.2290086.
[18]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Compact continuous wave THz source based on monolithic two-color laser diode’, in Nonlinear Optics and its Applications 2018, Straßburg, 2018, vol. 10684. doi: 10.1117/12.2306866.
[19]
C. Brenner et al., ‘Near infrared diode laser THz systems’, Advances in radio science, vol. 16, pp. 167–175, 2018, doi: 10.5194/ars-16-167-2018.
[20]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Spin-VCSELs: opportunities and challenges’, presented at the European VCSEL Day, Ulm, Apr. 12, 2018, Published.
[21]
M. Lindemann et al., ‘Ultrafast birefringent spin-lasers’, in WINDS book of abstracts, Kohala Coast, Hawaii, 2018, pp. 148–149. [Online]. Available: https://www.winds-meeting.info/winds2018/wp-content/uploads/2018/12/WINDS-2018-Book-of-Abstracts-final.pdf
[22]
A. Gerling, S. Dülme, N. Schrinski, A. Stöhr, M. R. Hofmann, and C. Brenner, ‘Continuous wave multimode amplitude THz spectroscopy’, presented at the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 2018, Published.
[23]
A. Gerling, M. R. Hofmann, and C. Brenner, ‘High speed single point THz phase measurement based on dual channel lock-in technique’, presented at the International Workshop on Mobile Terahertz Systems (IWMTS), Velen, Deutschland, 2018, Published.
[24]
M. Lenz et al., ‘Classification of brain tissue with optical coherence tomography by employing texture analysis’, presented at the SPIE Photonics Europe, Stasbourg, 2018, Published.
[25]
M. A. Alloush et al., ‘Resonant pulse amplification based on mode-locked semiconductor lasers’, presented at the The Semiconductor and Integrated Opto-Electronics (SIOE) Conference, Cardiff, Wales, 2018, Published.
[26]
C. Aydogan et al., ‘Fabrication of optical nanodevices through field-emission scanning probe lithography and cryogenic etching’, in Novel Patterning Technologies 2018, 2018, vol. 10584. doi: 10.1117/12.2305268.
[27]
M. Lindemann, T. Pusch, R. Michalzik, M. R. Hofmann, and N. C. Gerhardt, ‘Ultrafast polarization dynamics in spin-lasers for optical data’, presented at the SPIE Optics + Photonics, San Diego, Calif., Aug. 21, 2018, Published.
[28]
N. C. Gerhardt et al., ‘Polarization modulation in spin lasers: challenges and prospects’, presented at the SPIE Optics + Photonics, San Diego, Calif., Aug. 21, 2018, Published.
[29]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Thermally induced birefringence tuning of VCSELs’, presented at the European VCSEL Day, Ulm, Apr. 12, 2018, Published.

2017

[1]
V. Besaga, N. C. Gerhardt, P. P. Maksimyak, and M. R. Hofmann, ‘Common-path holographic objective for conventional photographic camera’, in Novel Optical Systems Design and Optimization XX, San Diego, CA, 2017, vol. 10376. doi: 10.1117/12.2273890.
[2]
M. Finkeldey, L. Göring, C. Brenner, M. Hofmann, and N. C. Gerhardt, ‘Depth-filtering in common-path digital holographic microscopy’, Optics express, vol. 25, no. 16, pp. 19398–19407, Aug. 2017, doi: 10.1364/oe.25.019398.
[3]
M. Lenz et al., ‘Spectral domain optical coherence tomography for non-destructive testing of protection coatings on metal substrates’, Applied Sciences, vol. 7, no. 4, Art. no. 364, Apr. 2017, doi: 10.3390/app7040364.
[4]
Y. Hu, B. Khani, C. Brenner, V. Rymanov, A. Stöhr, and M. Hofmann, ‘Two-co­lor laser for THz ge­ne­ra­ti­on with high speed pho­to­di­odes’, presented at the Ger­man Tera­hertz Con­fe­rence, Bochum, Mar. 30, 2017, Published.
[5]
A. Stöhr, V. Rymanov, B. Khani, Y. Hu, and M. R. Hofmann, ‘Applications for optical components in THz systems’, in Optical Fiber Communication Conference, Los Angeles, CA, 2017, Published. doi: 10.1364/ofc.2017.w3f.1.
[6]
M. N. Cherkashin, C. Brenner, W. D. Putro, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Dynamics of the photoacoustic response of single-element PZT transducers to pulse burst excitation’, in Photons Plus Ultrasound: Imaging and Sensing 2017, San Francisco, CA, 2017, vol. 10064. doi: 10.1117/12.2253051.
[7]
M. Finkeldey, L. Göring, F. Schellenberg, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging’, in Photonic Instrumentation Engineering IV, San Francisco, Calif., 2017, vol. 10110. doi: 10.1117/12.2250912.
[8]
M. Finkeldey, L. Göring, F. Schellenberg, N. C. Gerhardt, and M. Hofmann, ‘Backside imaging of a microcontroller with common-path digital holography’, in Practical holography XXXI: Materials and Applications, San Francisco, 2017, vol. 10127. doi: 10.1117/12.2250903.
[9]
L. Göring, M. Finkeldey, A. Ad­in­da-Oug­ba, N. C. Gerhardt, and M. Hofmann, ‘Lensless digital holographic microscope using in-line configuration and laser diode illumination’, in Practical holography XXXI: Materials and Applications, San Francisco, 2017, vol. 10127. doi: 10.1117/12.2250927.
[10]
M. Lenz et al., ‘Spectroscopic optical coherence tomography for ex vivo brain tumor analysis’, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, San Francisco, 2017, vol. 10054. doi: 10.1117/12.2252141.
[11]
M. N. Cherkashin, C. Brenner, W. D. Putro, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Linking transducer transfer function with multi-pulse excitation photoacoustic response’, in Medical Imaging 2017: Ultrasonic Imaging and Tomography, Orlando, Fla., 2017, vol. 10139. doi: 10.1117/12.2254577.
[12]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Terahertz frequency generation with monolithically integrated dual wavelength distributed Bragg reflector semiconductor laser diode’, IET optoelectronics, vol. 11, no. 2, pp. 49–52, Feb. 2017, doi: 10.1049/iet-opt.2016.0054.
[13]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘High-frequency polarization dynamics in spin-lasers: pushing the limits’, in Spintronics X, San Diego, Calif., 2017, vol. 10357. doi: 10.1117/12.2272972.
[14]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Investigations on polarization oscillation amplitudes in spin-VCSELs’, in Vertical-Cavity Surface-Emitting Lasers XXI, San Francisco, Calif., 2017, vol. 10122. doi: 10.1117/12.2252490.
[15]
T. Pusch, E. La Tona, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence’, Applied physics letters, vol. 110, no. 15, Art. no. 151106, Apr. 2017, doi: 10.1063/1.4980025.
[16]
H. Welp et al., ‘Nondestructive evaluation of protective coatings for the conservation of industrial monuments’, in Optics for Arts, Architecture, and Archaeology VI, München, 2017, vol. 10331. doi: 10.1117/12.2270170.
[17]
R. Pilny et al., ‘Femtosecond semiconductor laser system with resonator-internal dispersion adaptation’, Optics letters, vol. 42, no. 8, pp. 1524–1527, 2017, doi: 10.1364/ol.42.001524.
[18]
L. Göring, M. Finkeldey, F. Schellenberg, C. Brenner, M. R. Hofmann, and N. C. Gerhardt, ‘Optical metrology for the investigation of buried technical structures’, Technisches Messen, vol. 85, no. 2, pp. 104–110, 2017, doi: 10.1515/teme-2017-0096.
[19]
F. Alves et al., ‘Optical imaging’, in Small animal imaging, 2. edition., F. Kießling, B. J. Pichler, and P. Hauff, Eds. Cham: Springer, 2017, pp. 403–490. doi: 10.1007/978-3-319-42202-2_16.
[20]
R. Pilny et al., ‘Self-optimizing passively, actively and hybridly mode-locked diode lasers’, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2017), München, 2017, p. 156. doi: 10.1109/cleoe-eqec.2017.8086397.
[21]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Michalzik, ‘Birefringence tuning in vertical cavity surface emitting lasers based on asymmetric hearing’, presented at the VCSEL Day , Cardiff, Wales, 2017, Published.
[22]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘Ultrafast polarization dynamics with resonance frequencies beyond 100 GHz in birefringent spinlasers’, presented at the Gordon Research Conference Spin Dynamics in Nanostructures - Science and Applications of Spin Textures and Spin Currents, Les Diablerets, 2017, Published.
[23]
M. Finkeldey, L. Schnitzler, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Layer sectioning in buried structures with common-path digital holography’, presented at the Congress of the International Commission for Optics, Tokyo , 2017, Published.
[24]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Tunable polarization oscillations in resonantly pumped spin-VCSELs’, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2017), München, 2017, p. 109. doi: 10.1109/cleoe-eqec.2017.8086350.
[25]
M. Lenz et al., ‘Brain tissue differentiation based on optical coherence tomography images using  texture features’, presented at the European Conference on Biomedical Optics, München, 2017, Published.
[26]
Y. Hu, B. Khani, C. Brenner, V. Rymanov, A. Stohr, and M. R. Hofmann, ‘Compact CW THz spectroscopy system and its application in water absorption measurements’, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2017), München, 2017, p. 217. doi: 10.1109/cleoe-eqec.2017.8086458.
[27]
B. Khani, Y. Hu, V. Rymanov, C. Brenner, M. R. Hofmann, and A. Stöhr, ‘Compact optoelectronic continuous wave terahertz spectroscopy system (230–400 GHz) for paper sorting and characterization’, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC 2017), München, 2017, p. 212. doi: 10.1109/cleoe-eqec.2017.8086453.
[28]
M. Finkeldey, L. Göring, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, ‘Digital holographic microscopy of buried specimen using a common-path reflective setup’, DGaO-Proceedings, vol. 118, Art. no. A7, 2017, [Online]. Available: https://www.dgao-proceedings.de/archiv/118_titel_d.php
[29]
N. Surkamp, B. Döpke, A. Klehr, A. Knigge, G. Tränkle, and M. R. Hofmann, ‘Diode laser based terahertz asynchronous optical sampling spectroscopy’, presented at the SIOE, Cardiff, Wales, 2017, Published.
[30]
Y. Hu, B. Khani, C. Brenner, A. Stöhr, and M. R. Hofmann, ‘Tunable two-colour semiconductor laser for a compact CW THz spectroscopy system’, presented at the SIOE, Cardiff, Wales, 2017, Published.
[31]
J. O. Gwaro, C. Brenner, M. R. Hofmann, B. Sumpf, A. Klehr, and J. Fricke, ‘Generation of Terahertz radiation with monolithically integrated dual mode Distributed Bragg Reflector semiconductor diode laser’, presented at the German THz Conference, Bochum, Mar. 29, 2017, Published.
[32]
B. Döpke et al., ‘A mode-locked semiconductor laser based asynchronous sampling terahertz spectroscopy system’, presented at the German Terahertz Conference, Bochum, Mar. 29, 2017, Published.
[33]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘Ultrafast spin-VCSELs’, presented at the European Semiconductor Laser Workshop, Kongens Lyngby, Sep. 16, 2017, Published.
[34]
Y. Hu, B. Khani, C. Brenner, V. Rymanov, A. Stöhr, and M. R. Hofmann, ‘Two-color laser for THz generation with high speed photodiodes’, presented at the German THz Conference, Bochum, 2017, Published.
[35]
M. R. Hofmann et al., ‘THz-sources and systems based on near infrared diode lasers’, in Tagungsprogramm, Zusammenfassung der Beiträge, Kleinheubacher Tagung 2017, 2017, p. 15.

2016

[1]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘High-frequency operation of spin vertical-cavity surface-emitting lasers: towards 100 GHz’, in Spintronics IX, San Diego, Calif., Sep. 2016, vol. 9931. doi: 10.1117/12.2237163.
[2]
H. Jähme et al., ‘Recognition of pharmaceuticals with compact mini-Raman-spectrometer and automized pattern recognition algorithms’, in Optical Sensing and Detection IV, Brüssel, Aug. 2016, vol. 9899. doi: 10.1117/12.2228070.
[3]
F. Schellenberg, M. Finkeldey, N. C. Gerhardt, M. R. Hofmann, A. Moradi, and C. Paar, ‘Large laser spots and fault sensitivity analysis’, in 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST 2016), McLean, Va., 2016, pp. 203–208. doi: 10.1109/hst.2016.7495583.
[4]
J. O. Gwaro, C. Brenner, M. Hofmann, B. Sumpf, A. Klehr, and J. Fricke, ‘Terahertz wave generation from dual wavelength monolithic integrated distributed Bragg reflector semiconductor laser diode’, in 2016 German Microwave Conference GeMiC 2016, Bochum, 2016, pp. 11–14. doi: 10.1109/gemic.2016.7461543.
[5]
T. Pusch, M. Bou Sanayeh, M. Lindemann, N. C. Gerhardt, M. R. Hofmann, and R. Mich­al­zik, ‘Birefringence tuning of VCSELs’, in Semiconductor Lasers and Laser Dynamics VII, Brüssel, 2016, vol. 9892. doi: 10.1117/12.2228091.
[6]
N. C. Gerhardt, M. Lindemann, T. Pusch, R. Michalzik, and M. R. Hofmann, ‘Birefringent vertical cavity surface-emitting lasers: toward high-speed spin-lasers’, in Semiconductor Lasers and Laser Dynamics VII, Brüssel, 2016, vol. 9892. doi: 10.1117/12.2229356.
[7]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Frequency tuning of polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers’, in Semiconductor Lasers and Laser Dynamics VII, Brüssel, 2016, vol. 9892. doi: 10.1117/12.2229358.
[8]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. Hofmann, ‘Tera­hertz dif­fe­rence fre­quen­cy ge­ne­ra­ti­on by a mo­no­li­thic in­te­gra­ted dual mode di­stri­bu­ted bragg re­flec­tor se­mi­con­duc­tor diode laser’, presented at the International Workshop on Terahertz Technology and Applications, Kaiserslautern, Mar. 15, 2016, Published.
[9]
M. N. Cherkashin, C. Brenner, L. Göring, B. Döpke, N. C. Gerhardt, and M. R. Hofmann, ‘Dynamics of double-pulse photoacoustic excitation’, in Photons Plus Ultrasound: Imaging and Sensing 2016, San Francisco, Calif., Mar. 2016, vol. 9708. doi: 10.1117/12.2213476.
[10]
M. Lenz, R. Krug, H. Welp, K. Schmieder, and M. Hofmann, ‘Ex vivo brain tumor analysis using spectroscopic optical coherence tomography’, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX, San Francisco, Calif., 2016, vol. 9697. doi: 10.1117/12.2214704.
[11]
R. Pilny et al., ‘Interaction of phase and amplitude shaping in an external cavity semiconductor laser’, in Novel In-Plane Semiconductor Lasers XV, San Francisco, Calif., 2016, vol. 9767. doi: 10.1117/12.2212906.
[12]
M. Finkeldey, F. Schellenberg, N. C. Gerhardt, C. Paar, and M. Hofmann, ‘Common-path depth-filtered digital holography for high resolution imaging of buried semiconductor structures’, in Practical Holography XXX: Materials and Applications, San Francisco, Calif., 2016, vol. 9771. doi: 10.1117/12.2212454.
[13]
B. Döpke et al., ‘Timing jitter performance of mode-locked external cavity multi-quantum-well semiconductor lasers’, in Novel In-Plane Semiconductor Lasers XV, San Francisco, Calif., Mar. 2016, vol. 9767. doi: 10.1117/12.2213042.
[14]
F. Schellenberg et al., ‘On the complexity reduction of laser fault injection campaigns using OBIC measurements’, in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC 2015, Saint Malo, Mar. 2016, pp. 14–27. doi: 10.1109/fdtc.2015.10.
[15]
M. Lindemann, N. C. Gerhardt, M. R. Hofmann, T. Pusch, and R. Michalzik, ‘Influence of birefringence splitting on ultrafast polarization oscillations in VCSELs’, in Vertical-cavity surface-emitting lasers XX, San Francisco, Calif., 2016, vol. 9766. doi: 10.1117/12.2212413.
[16]
M. Lindemann, T. Pusch, R. Michalzik, N. C. Gerhardt, and M. R. Hofmann, ‘Frequency tuning of polarization oscillations: Toward high-speed spin-lasers’, Applied physics letters, vol. 108, no. 4, Art. no. 042404, Jan. 2016, doi: 10.1063/1.4940713.
[17]
J. O. Gwaro, C. Brenner, B. Sumpf, A. Klehr, J. Fricke, and M. R. Hofmann, ‘Terahertz difference frequency generation by a monolithic integrated dual mode Distributed Bragg Reflector semiconductor diode laser’, in 7th International Workshop on Terahertz Technology and Applications, Kaiserslautern, 2016, Published.

2015

[1]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. Hofmann, and R. Michalzik, ‘Vertical-cavity surface-emitting lasers with birefringence splitting above 250 GHz’, Electronics letters, vol. 51, no. 20, pp. 1600–1601, Oct. 2015, doi: 10.1049/el.2015.2149.
[2]
A. Ad­in­da-Oug­ba, B. Kabir, N. Koukourakis, F. Mitschker, N. C. Gerhardt, and M. Hofmann, ‘Compact low-cost lensless digital holographic microscope for topographic measurements of microstructures in reflection geometry’, in Optical systems design 2015, Jena, Sep. 2015, vol. 9628, pp. 1–8. doi: 10.1117/12.2191073.
[3]
A. Ad­in­da-Oug­ba, N. Koukourakis, N. C. Gerhardt, and M. Hofmann, ‘Simple concept for a wide-field lensless digital holographic microscope using a laser diode’, Current directions in biomedical engineering, vol. 1, no. 1, pp. 261–264, Sep. 2015, doi: 10.1515/cdbme-2015-0065.
[4]
M. Lindemann, H. Höpfner, N. C. Gerhardt, M. Hofmann, T. Pusch, and R. Michalzik, ‘Controlled switching and frequency tuning of polarization oscillations in vertical-cavity surface-emitting lasers’, in Spintronics VIII, San Diego, Calif., Sep. 2015, vol. 9551, pp. 1–5. doi: 10.1117/12.2197970.
[5]
M. Lenz, R. Krug, V. Jaedicke, R. Stroop, K. Schmieder, and M. R. Hofmann, ‘Spectral domain optical coherence tomography for ex vivo brain tumor analysis’, in Optical coherence imaging techniques and imaging in scattering media, München, Jul. 2015, vol. 9541, pp. 1–5. doi: 10.1117/12.2183614.
[6]
M. N. Cherkashin, C. Brenner, L. Schnitzler, B. Döpke, N. C. Gerhardt, and M. Hofmann, ‘Laser-diode-based photoacoustic setup to analyze Grüneisen relaxation-effect induced signal enhancement’, in Opto-acoustic methods and applications in biophotonics II, München, Jul. 2015, vol. 9539. doi: 10.1117/12.2183957.
[7]
A. Ad­in­da-Oug­ba, N. Koukourakis, A. Essaidi, N. C. Gerhardt, and M. Hofmann, ‘Quantitative phase imaging by wide field lensless digital holographic microscope’, in Optical methods for inspection, characterization, and imaging of biomaterials II, München, Jun. 2015, vol. 9529, p. 952903. doi: 10.1117/12.2184471.
[8]
J. C. Balzer et al., ‘Intracavity loss and dispersion managed mode-locked diode laser’, in 2015 Conference on Lasers and Electro-Optics (CLEO 2015), San José, Calif., May 2015, pp. 2048–2049. doi: 10.1364/cleo_si.2015.sm3f.1.
[9]
B. Döpke, J. C. Balzer, and M. Hofmann, ‘Phase and amplitude calibration of dual-mask spatial light modulator for high-resolution femtosecond pulse shaping’, Electronics letters, vol. 51, no. 8, pp. 642–644, Apr. 2015, doi: 10.1049/el.2015.0078.
[10]
J. C. Balzer et al., ‘Passively mode-locked diode laser with optimized dispersion management’, IEEE journal of selected topics in quantum electronics / Institute of Electrical and Electronics Engineers, vol. 21, no. 6, pp. 16–23, Apr. 2015, doi: 10.1109/jstqe.2015.2418225.
[11]
B. Döpke et al., ‘Ultrashort pulse generation with semiconductor lasers using intracavity phase- and amplitude pulse shaping’, in Novel in-plane semiconductor lasers XIV, San Francisco, Calif., Mar. 2015, vol. 9382, pp. 1–5. doi: 10.1117/12.2079040.
[12]
M. Lindemann, H. Höpfner, N. C. Gerhardt, M. R. Hofmann, T. Pusch, and R. Michalzik, ‘Ultrafast polarization dynamics with controlled polarization oscillations in vertical-cavity surface-emitting lasers’, in Vertical-cavity surface-emitting lasers XIX, San Francisco, Calif., Mar. 2015, vol. 9381, pp. 1–7. doi: 10.1117/12.2076920.
[13]
M. Lindemann, H. Höpfner, N. C. Gerhardt, M. R. Hofmann, T. Pusch, and R. Michalzik, ‘Towards high frequency operation of polarization oscillations in spin vertical-cavity surface-emitting lasers’, in Spintronics VIII, San Diego, Calif., 2015, vol. 9551. doi: 10.1117/12.2197969.
[14]
M. Lindemann, N. C. Gerhardt, M. Hofmann, T. Pusch, and R. Michalzik, ‘Tu­ning the fre­quen­cy of po­la­riza­t­i­on oscil­la­ti­ons in spin VC­SELs by me­cha­ni­cal strain in­duc­tion in GHz-ran­ge’, in The European Conference on Lasers and Electro-Optics 2015, München, 2015, Published.
[15]
T. Pusch, M. Lindemann, N. C. Gerhardt, M. Hofmann, and R. Michalzik, ‘Increasing the birefringence of VCSELs beyond 250 GHz’, in The European Conference on Lasers and Electro-Optics 2015, München, 2015, Published.
[16]
R. Pilny, B. Döpke, C. Brenner, J. C. Balzer, and M. Hofmann, ‘Optimization of a mode-locked diode laser by manipulation of intracavity dispersion and absorption with an evolutionary algorithm: paper CB_P_21’, in The European Conference on Lasers and Electro-Optics 2015, München, 2015, Published.
[17]
B. Döpke et al., ‘Spectral broadening of mode-locked semiconductor lasers by resonator-internal pulse shaping: paper CB_10_4’, in 2015 European Quantum Electronics Conference, München, 2015, Published.
[18]
B. Döpke et al., ‘Self-optimizing femtosecond semiconductor laser’, Optics express, vol. 23, no. 8, pp. 9710–9716, 2015, doi: 10.1364/oe.23.009710.
[19]
B. Döpke et al., ‘Spectral broadening of mode-locked semiconductor lasers by resonatorinternal pulse shaping’, in The European Conference on Lasers and Electro-Optics 2015, München, 2015, Published.

2014

[1]
N. C. Gerhardt, H. Höpfner, M. Lindemann, and M. R. Hofmann, ‘Polarization dynamics in spin-polarized vertical-cavity surface-emitting lasers’, in Spintronics VII, San Diego, Calif., Sep. 2014, vol. 9167, pp. 1–10. doi: 10.1117/12.2063723.
[2]
N. Koukourakis et al., ‘Employing electrically tunable lenses in confocal microscopy for axial scanning’, presented at the International Commission for Optics. Congress, Santiago de Compostela, Aug. 26, 2014, Published.
[3]
H. Höpfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, ‘Spin-controlled ultrafast vertical-cavity surface-emitting lasers’, in Semiconductor lasers and laser dynamics VI, Brüssel, May 2014, vol. 9134, pp. 1–6. doi: 10.1117/12.2049684.
[4]
N. Koukourakis et al., ‘Axial scanning in confocal microscopy employing adaptive lenses (CAL)’, Optics express, vol. 22, no. 5, pp. 6025–6039, Mar. 2014, doi: 10.1364/oe.22.006025.
[5]
H. Höpfner, M. Lindemann, N. C. Gerhardt, and M. Hofmann, ‘Coherent switching of polarization oscillations in vertical-cavity surface-emitting lasers’, in Vertical-cavity surface-emitting lasers XVIII, San Francisco, Calif., 2014, vol. 9001, pp. 9001–15. doi: 10.1117/12.2039196.
[6]
M. Steinert, M. Kratz, V. Jaedicke, M. R. Hofmann, and D. B. Jones, ‘Development and evaluation of a device for simultaneous uniaxial compression and optical imaging of cartilage samples in vitro’, Review of scientific instruments, vol. 85, no. 10, Art. no. 104301, 2014, doi: 10.1063/1.4898669.
[7]
N. Koukourakis et al., ‘Effects of axial scanning in confocal microscopy employing adaptive lenses (CAL)’, in Optical micro- and nanometrology V, Brüssel, 2014, vol. 9132. doi: 10.1117/12.2052152.
[8]
H. Höpfner, M. Lindemann, N. C. Gerhardt, and M. Hofmann, ‘Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers’, Applied physics letters, vol. 104, no. 2, Art. no. 022409, 2014, doi: 10.1063/1.4862330.
[9]
J. C. Balzer, B. Döpke, A. Klehr, G. Erbert, G. Traenkle, and M. Hofmann, ‘Femtosecond semiconductor laser system with arbitrary intracavity phase and amplitude manipulation’, in Novel in-plane semiconductor lasers XIII, San Francisco, Calif., 2014, vol. 9002, pp. 1–6. doi: 10.1117/12.2039206.
[10]
B. Döpke, J. C. Balzer, and M. Hofmann, ‘In-situ calibration of spatial light modulators in femtosecond pulse shapers’, in Emerging liquid crystal technologies IX, San Francisco, Calif., 2014, vol. 9004, pp. 1–6. doi: 10.1117/12.2039451.
[11]
V. Jaedicke et al., ‘Performance comparison of different metrics for spectroscopic optical coherence tomography’, in Biomedical applications of light scattering VIII, San Francisco, Calif., 2014, vol. 15, pp. 1–10. doi: 10.1117/12.2038891.
[12]
V. Jädicke, S. Göbel, N. Koukourakis, N. C. Gerhardt, H. Welp, and M. R. Hofmann, ‘Multiwavelength phase unwrapping and aberration correction using depth filtered digital holography’, Optics letters, vol. 39, no. 14, pp. 4160–4163, 2014, doi: 10.1364/ol.39.004160.
[13]
J. C. Balzer et al., ‘Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management’, Optics express, vol. 22, no. 15, pp. 18093–18100, 2014, doi: 10.1364/oe.22.018093.

2013

[1]
B. Döpke, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. Hofmann, ‘Intracavity cubic phase manipulation of mode-locked semiconductor lasers’, presented at the Semiconductor and Integrated Optoelectronics Conference, Cardiff, Apr. 11, 2013, Published.
[2]
V. Jaedicke, S. Agcaer, S. Goebel, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Contrast enhancement methods in optical coherence tomography using spectral features’, Biomedical engineering, vol. 58, no. Suppl. 1, Art. no. 4269, 2013, doi: 10.1515/bmt-2013-4269.
[3]
S. Goebel et al., ‘Quantitative phase analysis through scattering media by depth-filtered digital holography’, in Three-dimensional and multidimensional microscopy, San Francisco, Calif., 2013, vol. 8589, pp. 85891J-85891J–8. doi: 10.1117/12.2001159.
[4]
V. Jaedicke et al., ‘Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography’, Biomedical optics express, vol. 4, no. 12, pp. 2945–2961, 2013, doi: 10.1364/boe.4.002945.
[5]
N. C. Gerhardt et al., ‘Non-exponential photoluminescence transients in GaNAsP lattice matched to (001) silicon substrate’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2013, vol. 6. Reihe, Bd 48, no. 3. [Online]. Available:     https://www.dpg-verhandlungen.de/year/2013/conference/regensburg/downloads
[6]
M. Finkeldey et al., ‘Optical gain and lasing in GaNAsP/BGa(As)P heterostructures grown on (001) silicon substrate’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2013, vol. 6. Reihe, Bd 48, no. 3. [Online]. Available: https://www.dpg-verhandlungen.de/year/2013/conference/regensburg/downloads
[7]
J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. Hofmann, ‘High peak power pulses from dispersion optimised modelocked semiconductor laser’, Electronics letters, vol. 49, no. 13, pp. 838–839, 2013, doi: 10.1049/el.2013.1447.
[8]
N. C. Gerhardt et al., ‘Ultrafast spin-polarized vertical-cavity surface-emitting lasers’, in Spintronics VI, San Diego, Calif., 2013, vol. 8813, pp. 8313–80. doi: 10.1117/12.2022720.
[9]
J. C. Balzer, B. Döpke, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, ‘Mode-locked semiconductor laser with controllable intracavity dispersion and absorption’, in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO Europe/IQEC 2013), München, 2013, pp. 173–174. doi: 10.1109/cleoe-iqec.2013.6800751.
[10]
M. Hofmann, Ed., Semiconductor diode lasers for THz technology: [83. Sitzung vom 20. Juni 2012 in Düsseldorf]. Paderborn: Verlag Ferdinand Schöningh, 2013.
[11]
J. C. Balzer et al., ‘Leistungsstarke Femtosekunden-Diodenlasersysteme’, Photonik, vol. 45, no. 2, pp. 38–41, 2013.
[12]
J. C. Balzer, B. Döpke, A. Klehr, G. Erbert, G. Tränkle, and M. Hofmann, ‘Mode-locked semiconductor laser with controllable intracavity dispersion and absorption’, 2013, Published.
[13]
V. Jaedicke et al., ‘Spectroscopic optical coherence tomography with graphics processing unit based analysis of three dimensional data sets’, in Biomedical applications of light scattering VII, San Francisco, Calif., 2013, vol. 8592, pp. 859215-1-859215–7. doi: 10.1117/12.2000464.
[14]
H. Höpfner et al., ‘Spin relaxation length in quantum dot spin LEDs’, Physica status solidi C, vol. 10, no. 9, pp. 1214–1217, 2013, doi: 10.1002/pssc.201200689.
[15]
H. Höpfner et al., ‘Spin injection, transport, and relaxation in spin light-emitting diodes: magnetic field effects’, in Spintronics VI, San Diego, Calif., 2013, vol. 8813, pp. 8813–43. doi: 10.1117/12.2023324.
[16]
H. Höpfner et al., ‘Spin injection and spin relaxation: magnetic field effects’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2013, vol. 6. Reihe, Bd 48, no. 3. [Online]. Available:     https://www.dpg-verhandlungen.de/year/2013/conference/regensburg/downloads
[17]
A. Ludwig et al., ‘Quantum dot spintronics: fundamentals and applications’, in Magnetic nanostructures, vol. 246, H. Zabel and M. Farle, Eds. Berlin: Springer, 2013, pp. 235–268. doi: 10.1007/978-3-642-32042-2_7.
[18]
K. Jandieri et al., ‘Nonexponential photoluminescence transients in a Ga(NAsP) lattice matched to a (001) silicon substrate’, Physical review B, vol. 87, no. 3, Art. no. 035303, Jan. 2013, doi: 10.1103/physrevb.87.035303.
[19]
C. Brenner, H. Horstkemper, I. Cámara Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, ‘Colliding pulse modelocked lasers for terahertz photomixing’, in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO Europe/IQEC 2013), München, 2013, pp. 176–177. doi: 10.1109/cleoe-iqec.2013.6800754.

2012

[1]
C. Brenner, H. Horstkemper, I. Camara Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, ‘Terahertz picosecond pulse photomixing with colliding pulse modelocked lasers’, presented at the European Semiconductor Laser Workshop, Brüssel, Sep. 21, 2012, Published.
[2]
M. Hofmann, ‘Neue optische Verfahren für die biomedizinische Bildgebung’, Sep. 19, 2012, Published.
[3]
N. C. Gerhardt, M. Li, H. Jähme, H. Höpfner, T. Ackemann, and M. Hofmann, ‘Ultrafast spin-induced polarization oscillations in vertical-cavity surface-emitting lasers’, Jun. 01, 2012, Published.
[4]
J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, and M. Hofmann, ‘All semiconductor high power fs laser system with variable repetition rate’, 2012, Published.
[5]
H. Höpfner et al., ‘Room temperature spin relaxation in quantum dot based spin-optoelectronic devices’, in Ultrafast phenomena and nanophotonics XVI, San Francisco, Calif., 2012, vol. 8260, pp. 1–7. doi: 10.1117/12.907821.
[6]
H. Höpfner et al., ‘Magnetic field dependence of the spin relaxation length in spin light-emitting diodes’, Applied physics letters, vol. 101, no. 11, pp. 112402-1-112402–4, 2012, doi: 10.1063/1.4752162.
[7]
H. Soldat et al., ‘Erratum: “Room temperature spin relaxation length in spin light-emitting diodes”: [Appl. Phys. Lett. 99, 051102 (2011)]’, Applied physics letters, vol. 100, no. 26, pp. 269902–1, 2012, doi: 10.1063/1.4728990.
[8]
V. Jaedicke et al., ‘Signal processing for spectroscopic optical coherence tomography’, in Proceedings of the 7th International Workshop on Biosignal Interpretation (BSI2012), Como, It., 2012, pp. 224–227.
[9]
C. Fritsche et al., ‘Temperature dependence of the spin relaxation length in spin quantum dot LEDs’, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 6. Reihe, Bd 47, no. 4, 2012, [Online]. Available: https://www.dpg-verhandlungen.de/year/2012/conference/berlin/downloads
[10]
H. Höpfner et al., ‘Spin relaxation dynamics in spin-LEDs’, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 6. Reihe, Bd 47, no. 4, 2012, [Online]. Available: https://www.dpg-verhandlungen.de/year/2012/conference/berlin/downloads
[11]
V. Jaedicke et al., ‘System development for spectroscopic optical coherence tomography’, Biomedical engineering, vol. 57, no. Heft SI-1 Track-B, p. 327, 2012, doi: 10.1515/bmt-2012-4245.
[12]
S. Goebel, S. Agcaer, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Signal processing for spectroscopic optical coherence tomography’, Biomedical engineering, vol. 57, no. SI-1 Track-B, p. 328, 2012, doi: 10.1515/bmt-2012-4258.
[13]
J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, and M. Hofmann, ‘All semiconductor high power fs laser system with variable repetition rate’, in Novel in-plane semiconductor lasers XI, San Francisco, Calif., 2012, vol. 8277, pp. 1–7. doi: 10.1117/12.907953.
[14]
N. Koukourakis et al., ‘Time-resolved photoluminescence and optical gain in Ga(NAsP) pseudomorphically grown on silicon’, Verhandlungen der Deutschen Physikalischen Gesellschaft, vol. 6. Reihe, Bd 47, no. 4, 2012, [Online]. Available: https://www.dpg-verhandlungen.de/year/2012/conference/berlin/downloads
[15]
N. Koukourakis et al., ‘Photoluminescence and optical gain of Ga(NAsP) heterostructures pseudomorphically grown on silicon (001) substrate’, in Silicon photonics VII, San Francisco, Calif., 2012, vol. 8266, pp. 1–6. doi: 10.1117/12.907677.
[16]
N. Koukourakis et al., ‘High room-temperature optical gain in Ga(NAsP)/Si heterostructures’, Applied physics letters, vol. 100, no. 9, pp. 092107-1-092107–3, 2012, doi: 10.1063/1.3690886.
[17]
M. Li, T. Ackemann, N. C. Gerhardt, and M. Hofmann, ‘Analysis of birefringence controlled ultrafast polarization oscillations in spin vertical-cavity surface-emitting lasers’, in EOS annual meeting 2012 (EOSAM 2012), Aberdeen, 2012, pp. 104–107.
[18]
N. Koukourakis et al., ‘Depth-filtered digital holography’, Optics express, vol. 20, no. 20, pp. 22636–22648, 2012, doi: 10.1364/oe.20.022636.
[19]
N. C. Gerhardt and M. Hofmann, ‘Spin-controlled vertical-cavity surface-emitting lasers’, Advances in optical technologies, pp. 268949-1-268949–15, 2012, doi: 10.1155/2012/268949.
[20]
C.-S. Friedrich et al., ‘Photoacoustic blood oxygenation imaging based on semiconductor lasers’, Photonics and optoelectronics, vol. 1, no. 3, pp. 48–54, 2012, [Online]. Available: http://www.jpo-journal.org/Download.aspx?ID=4071
[21]
N. C. Gerhardt et al., ‘Time-resolved photoluminescence and optical gain in Ga(NAsP) heterostructures pseudomorphi-cally grown on silicon’, presented at the E-MRS 2012 Spring Meeting, Strasbourg, 2012, Published.

2011

[1]
V. Jaedicke, H. Wiethoff, C. T. Kasseck, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Spectroscopic Optical Coherence Tomography for substance differentiation’, presented at the International Symposium on Optical Coherence Tomography, Ilmenau, Sep. 13, 2011, Published.
[2]
B. Witzigmann et al., ‘Design and simulation of electrically pumped mode-locked VECSELs’, in Vertical external cavity surface emitting lasers (VECSELs), San Francisco, Calif., 2011, vol. 7919, p. 79190O. doi: 10.1117/12.873240.
[3]
H. Soldat et al., ‘Room temperature spin relaxation length in spin light-emitting diodes’, Applied physics letters, vol. 99, no. 5, Art. no. 051102, 2011, doi: 10.1063/1.3622662.
[4]
T. Schlauch, J. C. Balzer, M. Hofmann, A. Klehr, G. Erbert, and G. Tränkle, ‘Passively mode-locked two section laser diode with intracavity dispersion control’, in Ultrafast phenomena in semiconductors and nanostructure materials XV, San Francisco, Calif., 2011, vol. 7937, pp. 79370S-1-79370S–7. doi: 10.1117/12.873831.
[5]
A. Ludwig et al., ‘Perpendicular spin injection and polarization features in InAs quantum dots’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2011, vol. 6. Reihe, Bd 46, no. 1. [Online]. Available: https://www.dpg-verhandlungen.de/year/2011/conference/dresden/downloads
[6]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, G. Schmitz, and A. Eder, ‘Ex­pe­ri­men­tal eva­lua­ti­on of mul­tis­pec­tral pho­toa­coustic coded ex­ci­ta­ti­on using or­tho­go­nal uni­po­lar golay codes’, in 442. Wilhelm und Else Heraeus-Seminar ‘Molecular Imaging’ in Bad Honnef, October 5th - 8th, 2009, 2011, Published.
[7]
M. Beckmann, M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Photoacoustic coded excitation using periodically perfect sequences’, in 2011 IEEE International Ultrasonics Symposium (IUS 2011), Orlando, Fla., 2011, pp. 1179–1182. doi: 10.1109/ultsym.2011.0290.
[8]
A. Ludwig et al., ‘Electrical spin injection in InAs quantum dots at room temperature and adjustment of the emission wavelength for spintronic applications’, Journal of crystal growth, vol. 323, no. 1, pp. 376–379, 2011, doi: 10.1016/j.jcrysgro.2010.09.087.
[9]
H. Soldat et al., ‘Remanent spin injection and spin relaxation in quantum dot light emitting diodes’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2011, vol. 6. Reihe, Bd 46, no. 1. [Online]. Available: https://www.dpg-verhandlungen.de/year/2011/conference/dresden/downloads
[10]
R. Y. W. Lai et al., ‘High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy’, Science and technology of advanced materials, vol. 12, no. 5, Art. no. 054201, Sep. 2011, doi: 10.1088/1468-6996/12/5/054201.
[11]
D. Grosse et al., ‘Single-shot holography with colliding pulse mode-locked lasers as light source’, in Quantum electronics conference & Lasers and electro-optics (CLEO/IQEC/Pacific Rim), 2011, 2011, pp. 1693–1695. doi: 10.1109/iqec-cleo.2011.6194017.
[12]
C.-S. Friedrich et al., ‘Quantitative photoacoustic blood oxygenation measurement of whole porcine blood samples using a multi-wavelength semiconductor laser system’, in Diffuse optical imaging III, München, 2011, vol. 8088, pp. 1–9. doi: 10.1117/12.889682.
[13]
D. Grosse et al., ‘Colliding pulse mode-locked lasers as light sources for single-shot holography’, in International Conference on Applications of Optics and Photonics, Braga, 2011, vol. 8001, pp. 1–6. doi: 10.1117/12.892185.
[14]
N. C. Gerhardt, M. Li, H. Jähme, H. Höpfner, T. Ackemann, and M. Hofmann, ‘Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers’, Applied physics letters, vol. 99, no. 15, pp. 151107-1-151107–3, 2011, doi: 10.1063/1.3651339.
[15]
N. C. Gerhardt et al., ‘Time-resolved photoluminescence and optical gain of Ga(NAsP) heterostructures pseudomorphically grown on silicon (001) substrate’, in 2011 13th International Conference on Transparent Optical Networks (ICTON 2011), Stockholm, 2011, pp. 111–114. doi: 10.1109/icton.2011.5970794.
[16]
H. Jähme, M. Bülters, D. Jäger, and M. Hofmann, ‘Fastly tunable external-cavity diode-lasers controlled by electro-absorption modulators’, in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO Europe/EQEC 2011), München, 2011, Published. doi: 10.1109/cleoe.2011.5942626.
[17]
N. C. Gerhardt et al., ‘Op­ti­cal gain in Ga(NAsP)/(BGa)((As)P) he­te­rost­ruc­tu­res pseu­do­mor­phi­cal­ly grown on Si(001) sub­stra­te’, in E-MRS 2010 Spring Meeting, 2011, Published.
[18]
N. Koukourakis et al., ‘Optical gain in GaNAsP heterostructures pseudomorphically grown on silicon’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2011, vol. 6. Reihe, Bd 46, no. 1. [Online]. Available: https://www.dpg-verhandlungen.de/year/2011/conference/dresden/downloads
[19]
D. Grosse et al., ‘Colliding pulse mode-locked lasers as light sources for single-shot holography’, presented at the Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress, Cardiff, 2011, Published.
[20]
M. Li, H. Jähme, H. Soldat, N. C. Gerhardt, M. R. Hofmann, and T. Ackemann, ‘Spin induced gigahertz polarization oscillations in vertical-cavity surface-emitting laser devices’, in Vertical-cavity surface-emitting lasers XV, San Francisco, Calif., 2011, vol. 7952, pp. 1–7. doi: 10.1117/12.873758.
[21]
N. Koukourakis et al., ‘Modal gain and time-resolved photoluminescence of Ga(NAsP) heterostructures pseudomorphically grown on silicon (001) substrate’, in Conference on Lasers and Electro-Optics (CLEO), 2011, Baltimore, Md., 2011, pp. 2720–2721. doi: 10.1364/cleo_at.2011.jtui86.
[22]
N. Koukourakis et al., ‘High modal gain in Ga(NAsP)/(BGa)((As)P) heterostructures grown lattice matched on (001) silicon’, in Gallium nitride materials and devices VI, 2011, vol. 7939, pp. 793927-1-793927–7. doi: 10.1117/12.873170.
[23]
J. C. Balzer, T. Schlauch, Th. Hoffmann, A. Klehr, G. Erbert, and M. Hofmann, ‘Modelocked semiconductor laser system with pulse picking for variable repetition rate’, Electronics letters, vol. 47, no. 25, pp. 1387–1388, 2011, doi: 10.1049/el.2011.3378.
[24]
A. Ludwig, M. Hofmann, W. Busser, M. Muhler, K. Sliozberg, and W. Schuhmann, ‘Die Sonne Wasser spalten lassen: Wasserstoff umweltfreundlich herstellen’, Rubin Sonderheft, pp. 26–33, 2011, [Online]. Available: http://www.ruhr-uni-bochum.de/rubin/werkstoffe/pdf/beitrag04.pdf
[25]
N. Koukourakis et al., ‘Photorefractive two-wave mixing for image amplification in digital holography’, Optics express, vol. 19, no. 22, pp. 22004–22023, 2011, doi: 10.1364/oe.19.022004.
[26]
C. Brenner, C.-S. Friedrich, and M. Hofmann, ‘Semiconductor diode lasers for terahertz technology’, Journal of infrared, millimeter, and terahertz waves, vol. 32, no. 11, pp. 1253–1266, 2011, doi: 10.1007/s10762-011-9815-4.
[27]
C. Brenner and M. Hofmann, ‘Semiconductor laser based THz technology’, in Conference on Lasers and Electro-Optics (CLEO), 2011, Baltimore, Md., 2011, Published. doi: 10.1364/cleo_si.2011.cmff3.
[28]
C. Brenner and M. Hofmann, ‘Semiconductor laser based THz technology’, in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO Europe/EQEC 2011), München, 2011, Published.
[29]
M. Li, H. Jähme, S. Hövel, A. Bischoff, N. C. Gerhardt, and M. Hofmann, ‘Spin dy­na­mics in ver­ti­cal-ca­vi­ty sur­face-emit­ting la­sers at room tem­pe­ra­tu­re’, in Semiconductor and Integrated Optoelectronics Conference, 2011, Published.

2010

[1]
N. C. Gerhardt, M. Li, H. Jähme, M. Hofmann, and T. Ackermann, ‘Gigahertz circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers’, presented at the International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors, Paderborn, Aug. 17, 2010, Published.
[2]
N. C. Gerhardt et al., ‘Properties of spin.​optoelectronic-devices’, presented at the Tutorial, International Research Training Group (IRTG) workshop New Materials – New Functionalities, Marburg, Jul. 05, 2010, Published.
[3]
N. C. Gerhardt et al., ‘Novel semiconductor based laser systems and devices’, presented at the German-American Frontiers of Engineering Symposium, Oak Ridge, Tenn., Apr. 23, 2010, Published.
[4]
C. T. Kasseck et al., ‘Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample’, Journal of biomedical optics, vol. 15, no. 4, p. 46019, 2010, doi: 10.1117/1.3477193.
[5]
M. Mienkina et al., ‘Multispectral photoacoustic coded excitation imaging using unipolar orthogonal Golay codes’, Optics express, vol. 18, no. 9, pp. 9076–9087, 2010, doi: 10.1364/oe.18.009076.
[6]
V. Jaedicke, C. T. Kasseck, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Depth re­sol­ved sub­stan­ce iden­ti­fi­ca­ti­on using pat­tern re­co­gni­ti­on in spec­trosco­pic fre­quen­cy do­main op­ti­cal co­he­rence to­mo­gra­phy’, Biomedical engineering, vol. 55, no. S1, 2010.
[7]
N. C. Gerhardt, M. Li, H. Jähme, H. Soldat, M. Hofmann, and T. Ackemann, ‘Ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting laser devices’, in Physics and simulation of optoelectronic devices XVIII, 2010, vol. 7597, pp. 1–9. doi: 10.1117/12.841606.
[8]
M. Li, H. Jähme, H. Soldat, N. C. Gerhardt, M. Hofmann, and T. Ackemann, ‘Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices’, Applied physics letters, vol. 97, no. 19, pp. 191114-1-191114–3, 2010, doi: 10.1063/1.3515855.
[9]
C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Substance identification by depth resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography’, Optics communications, vol. 283, no. 23, pp. 4816–4822, 2010, doi: 10.1016/j.optcom.2010.06.073.
[10]
N. C. Gerhardt, M. Li, H. Jähme, H. Soldat, M. R. Hofmann, and T. Ackemann, ‘Gigahertz circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers’, in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010, San Jose, Calif., 2010, pp. 1–2. doi: 10.1364/cleo.2010.cme6.
[11]
C. Bückers et al., ‘Laser gain in dilute nitride Ga(NAsP) semiconductor quantum well structures on silicon substrate: a microscopic analysis’, in Fourth International Conference on Optical, Optoelectronic and Photonic Materials and Applications, 2010, Published.
[12]
M. Beckmann, M. Mienkina, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. R. Hofmann, ‘Monospectral photoacoustic imaging using Legendre sequences’, in 2010 IEEE International Ultrasonics Symposium (IUS), San Diego, Calif., 2010, pp. 386–389. doi: 10.1109/ultsym.2010.5935648.
[13]
M. R. Hofmann, M. Scheller, C. Brenner, K. Baaske, and M. Koch, ‘Cost-effective THz spectroscopy with continuous-wave laser sources’, in 2010 proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, 2010, pp. 3134–3137. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5505354
[14]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, W. G. Wilkening, M. Hofmann, and G. Schmitz, ‘Experimental evaluation of photoacoustic coded excitation using unipolar golay codes’, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 7, pp. 1583–1593, 2010, doi: 10.1109/tuffc.2010.1588.
[15]
V. Jaedicke, C. T. Kasseck, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Substance identification in spectroscopic optical coherence tomograhpy using pattern recognition’, in Frontiers in optics, Rochester, NY, 2010, Published. doi: 10.1364/fio.2010.ftuy2.
[16]
S. Lamrini, P. Koopmann, K. Scholle, P. Fuhrberg, and M. Hofmann, ‘High-power Ho: YAG laser in-band pumped by laser diodes at 1.9 µm and wavelength-stabilized by a volume bragg grating’, in Applications of lasers for sensing and free space communications, San Diego, Calif., 2010, Published. doi: 10.1364/assp.2010.amb13.
[17]
N. C. Gerhardt et al., ‘Novel se­mi­con­duc­tor based laser sys­tems and de­vices’, in 13th German-American Frontiers of Engineering Symposium, 2010, Published.
[18]
H. Jähme, N. C. Gerhardt, M. Hofmann, M. Bülters, and D. Jäger, ‘Elec­tro-op­ti­cal mo­du­la­tor ar­rays for the ul­tra-fast spec­tral tu­ning of ex­ter­nal-ca­vi­ty diode la­sers’, in Semiconductor and Integrated Optoelectronics, 2010, Published.
[19]
C. Brenner et al., ‘Compact diode-laser-based system for continuous-wave and quasi-time-domain terahertz spectroscopy’, Optics letters, vol. 35, no. 23, pp. 3859–3861, 2010, doi: 10.1364/ol.35.003859.
[20]
R. Y. W. Lai et al., ‘Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy’, Journal of microelectromechanical systems, vol. 19, no. 5, pp. 1175–1179, 2010, doi: 10.1109/jmems.2010.2067442.
[21]
C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. Hofmann, ‘Frequency domain optical coherence tomography with subsequent depth resolved spectroscopic image analysis’, in Optical coherence tomography and coherence domain optical methods in biomedicine XIV, 2010, vol. 7544, pp. 7554–101. doi: 10.1117/12.840029.
[22]
H. Welp, V. Jaedicke, C. Kasseck, N. C. Gerhardt, and M. Hofmann, ‘Spec­tral pat­tern clas­si­fi­ca­ti­on in op­ti­cal co­he­rence to­mo­gra­phy’, in Crossing borders within the ABC, 2010, vol. 55, pp. 737–543.
[23]
S. Lamrini, P. Koopmann, K. Scholle, P. Fuhrberg, and M. Hofmann, ‘High-Power Ho: YAG laser in-band pum­ped by laser di­odes at 1.9 µm and wa­ve­length-sta­bi­li­zed by a vo­lu­me bragg gra­ting’, in Advanced Solid-State Photonics (ASSP): conference paper, San Diego, 2010, Published. doi: 10.1364/assp.2010.amb13.
[24]
S. Lamrini, P. Koopmann, K. Scholle, P. Fuhrberg, and M. Hofmann, ‘Com­pact high-power Ho: YAG MOPA in-band pum­ped by laser diode stacks at 1.9 micron’, in 4th EPS-QEOD Europhoton Conference on Solid-State, Fibre, and Waveguide Coherent Light Sources, Hamburg, 2010, vol. 34, C.
[25]
N. Koukourakis, N. C. Gerhardt, M. Hofmann, and R. Y. W. Lai, ‘Photorefractive two-wave mixing for image amplification in digital holography’, in Frontiers in optics, Rochester, NY, 2010, Published.
[26]
E. U. Schuster et al., ‘Epitaxial growth and interfacial magnetism of spin aligner for remanent spin injection: [Fe/Tb]n/Fe/MgO/GaAs-light emitting diode as a prototype system’, Journal of applied physics, vol. 108, no. 6, Art. no. 063902, 2010, doi: 10.1063/1.3476265.
[27]
N. Koukourakis et al., ‘Modal gain analysis of GaNAsP heterostructures on silicon’, in Frontiers in optics, Rochester, NY, 2010, Published. doi: 10.1364/fio.2010.jwa56.
[28]
T. Schlauch, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. Hofmann, ‘Femtosecond passively modelocked diode laser with intracavity dispersion management’, Optics express, vol. 18, no. 23, pp. 24316–24324, 2010, doi: 10.1364/oe.18.024316.
[29]
J. C. Balzer, T. Schlauch, M. Hofmann, A. Klehr, and G. Erbert, ‘In­tra­ca­vi­ty dis­per­si­on con­trol of a pas­si­ve­ly mo­de­lo­cked se­mi­con­duc­tor laser in an ex­ter­nal Fou­rier trans­form ca­vi­ty’, in 4th EPS-QEOD Europhoton Conference on Solid-State, Fibre, and Waveguide Coherent Light Sources, Hamburg, 2010, vol. 34, C.
[30]
M. Li, N. C. Gerhardt, H. Jähme, M. Hofmann, and T. Ackemann, ‘Gi­ga­hertz cir­cu­lar po­la­riza­t­i­on oscil­la­ti­ons in spin-po­la­ri­zed ver­ti­cal-ca­vi­ty sur­face-emit­ting la­sers’, in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010, San Jose, Calif., 2010, Published.
[31]
C. Brenner et al., ‘Diode laser based THZ ho­mo­dy­ne sys­tem for cw and quasi time do­main spec­trosco­py’, in Laser Optics Berlin 2010, Berlin, 2010, Published.
[32]
C. Brenner and M. Hofmann, ‘New con­cepts for con­ti­n­uous wave and quasi time do­main THz sys­tems’, in EOS annual meeting 2010, Paris, 2010, pp. 198–199.

2009

[1]
M. Li, H. Jähme, S. Hövel, A. Bischoff, N. C. Gerhardt, and M. Hofmann, ‘Spin dynamics in vertical-cavity surface-emitting lasers at room temperature’, presented at the Semiconductor and Integrated Optoelectronics Conference, Cardiff, Apr. 06, 2009, Published.
[2]
B. Kunert et al., ‘Lasing of lattice-matched Ga(NAsP) quantum well heterostructures monolithically integrated on (001) Si substrate’, presented at the Silicon Photonics, San Jose, Calif., Jan. 27, 2009, Published.
[3]
M. Mienkina, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Multispectral photoacoustic coded excitation using orthogonal unipolar golay codes’, in Diagnostic imaging, München, 2009, vol. 2, pp. 217–220. doi: 10.1007/978-3-642-03879-2_61.
[4]
C. Kasseck et al., ‘Three-dimensional bone imaging: optical coherence tomography versus micro computer tomography’, in Optical coherence tomography and coherence techniques IV, München, 2009, vol. 7372, p. 73721B. doi: 10.1117/12.831814.
[5]
M. Bülters, M. Breede, M. Hofmann, and D. Jäger, ‘Nanosecond switching and wavelength tuning of external-cavity laser diode using a reflective electroabsorption modulator’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 21, no. 18, pp. 1347–1349, 2009, doi: 10.1109/lpt.2009.2026585.
[6]
B. Kunert et al., ‘Op­ti­cal ve­ri­fi­ca­ti­on of gain in Ga(NAsP)/(BGa)(AsP) mul­ti-quan­tum-well he­te­rost­ruc­tu­res mo­no­li­thi­cal­ly grown lat­ti­ce-mat­ched on (001) si­li­con sub­stra­te’, Physica status solidi, vol. 6,6, 2009.
[7]
C. Lange et al., ‘Lasing in optically pumped Ga(NAsP)/(BGa)(AsP) heterstructures on Silicon’, in Conference on Lasers and Electro-Optics, 2009 and 2009 Quantum Electronics and Laser Science Conference, Baltimore, Md., 2009, pp. 1–2. doi: 10.1364/cleo.2009.ctuy2.
[8]
N. Koukourakis et al., ‘Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser’, Electronics letters, vol. 45, no. 1, pp. 46–48, 2009, doi: 10.1049/el:20092390.
[9]
N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. Hofmann, ‘Single-shot holography for depth resolved three dimensional imaging’, Optics express, vol. 17, no. 23, pp. 21015–21029, 2009, doi: 10.1364/oe.17.021015.
[10]
N. Koukourakis et al., ‘New concepts for depth resolved holographic imaging based on spectrally tunable diode lasers’, in Conference on Lasers and Electro-Optics, 2009 and 2009 Quantum Electronics and Laser Science Conference, Baltimore, Md., 2009, pp. 1253–1254. doi: 10.1364/cleo.2009.ctuaa2.
[11]
B. Kunert et al., ‘Laser operation of III/V compound material Ga(NAsP) grown lattice-matched on (001) Si substrate’, in Device Research Conference, Santa Barbara, Calif., 2009, pp. 193–194. doi: 10.1109/drc.2009.5354936.
[12]
M. Mienkina, A. Eder, G. Schmitz, C.-S. Friedrich, N. C. Gerhardt, and M. Hofmann, ‘Feasibility study of multispectral photoacoustic coded excitation using orthogonal unipolar Golay codes’, in 2009 IEEE Ultrasonics Symposium, Rom, 2009, pp. 108–111. doi: 10.1109/ultsym.2009.5441941.
[13]
S. Hövel et al., ‘Spin-con­trol­led op­to­elec­tro­nic de­vices’, in Physica status solidi, Klink, 2009, vol. 6,2. doi: 10.1002/pssc.200880357.
[14]
C. Lange et al., ‘Gain characteristics and lasing of Ga(NAsP) multi-quantum well structures’, in Physica status solidi, Klink, 2009, vol. 6,2. doi: 10.1002/pssc.200880360.
[15]
N. C. Gerhardt et al., ‘Ultrafast spin dynamics in spin-polarized vertical-cavity surface-emitting laser devices’, in Conference on Lasers and Electro-Optics, 2009 and 2009 Quantum Electronics and Laser Science Conference, Baltimore, Md., 2009, pp. 696–697. doi: 10.1364/cleo.2009.cmrr6.
[16]
C.-S. Friedrich, M.-C. Wawreczko, M. Mienkina, N. C. Gerhardt, G. Schmitz, and M. Hofmann, ‘Compact semiconductor laser sources for photoacoustic imaging’, in Photons plus ultrasound, San Jose, Calif., 2009, vol. 10, pp. 1–7. doi: 10.1117/12.809261.
[17]
N. Koukourakis et al., ‘New concepts for depth resolved holographic imaging’, in Digital holography and 3-D imaging, Vancouver, British Columbia, 2009, Published. doi: 10.1364/dh.2009.dmb6.
[18]
T. Schlauch, M. Hofmann, A. Klehr, and G. Erbert, ‘High peak power femtosecond pulses from an amplified mode-locked semiconductor laser in an external cavity with intracavity dispersion control’, in Special issue, 2009, vol. 3,6.
[19]
M. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent’, Biomedical engineering, vol. 54, no. 2, pp. 83–88, 2009, doi: 10.1515/bmt.2009.012.
[20]
M. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, ‘Comparison of coding techniques for photoacoustic coded excitation’, in Proceedings, Rotterdam, 2009, pp. 313–316. [Online]. Available: http://pub.dega-akustik.de/NAG_DAGA_2009/data/articles/000106.pdf
[21]
H. Jähme, M. Li, S. Hövel, N. C. Gerhardt, and M. Hofmann, ‘Spin-relaxation measurements in VCSEL-structures at room temperature’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2009, vol. 6. Reihe, Bd 44, no. 5. [Online]. Available: https://www.dpg-verhandlungen.de/year/2009/conference/dresden/downloads
[22]
C. Brenner et al., ‘Semiconductor laser based THz generation and detection’, in Physica status solidi, Klink, 2009, vol. 6,2. doi: 10.1002/pssc.200880356.
[23]
C.-S. Friedrich et al., ‘THz sources and detectors based on diode lasers’, in Nonlinear frequency generation and conversion: materials, devices and applications VIII, San Jose, Calif., 2009, vol. 7197, p. 71970B. doi: 10.1117/12.807853.
[24]
C. Brenner et al., ‘Ver­sa­ti­le THz ho­mo­dyn sys­tem based on an am­pli­fied laser diode in an ex­ter­nal ca­vi­ty’, in International Workshop on Terahertz Technology, 2009, Published.
[25]
M. Bülters, M. Breede, M. R. Hofmann, and D. S. Jäger, ‘Vertical modulator array for fast intra-cavity wavelength control’, in   European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, München, Aug. 2009, Published. doi: 10.1109/cleoe-eqec.2009.5192074.

2008

[1]
M. Li, H. Jähme, S. Hövel, N. C. Gerhardt, and M. Hofmann, ‘Room-temperature spin-optoelectronic devices’, presented at the International Workshop Spin phenomena in reduced dimension, Regensburg, Sep. 24, 2008, Published. [Online]. Available: http://www.physik.uni-regensburg.de/sfb689/Int_Workshop_2008/Posterliste.pdf
[2]
M. P. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Evaluation of simplex codes for photoacoustic coded excitation’, in 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerpen, 2008, vol. 22, pp. 444–447. doi: 10.1007/978-3-540-89208-3_105.
[3]
M. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, ‘Simulation study of photoacoustic coded excitation using Golay codes’, in IEEE Ultrasonics Symposium, 2008, Beijing, 2008, pp. 1242–1245. doi: 10.1109/ultsym.2008.0300.
[4]
B. Kunert et al., ‘Optical gain in Ga(NAsP)/(BGa)(AsP) multi-quantum-well heterostructures grown lattice-matched on (001) Silicon substrate’, in Device Research Conference, 2008, 2008, pp. 301–302. doi: 10.1109/drc.2008.4800849.
[5]
C. Jördens, T. Schlauch, M. Li, M. Hofmann, M. Bieler, and M. Koch, ‘All-semiconductor laser driven terahertz time-domain spectrometer’, Applied physics B, vol. 93, no. 2–3, pp. 515–520, 2008, doi: 10.1007/s00340-008-3210-4.
[6]
S. Hövel et al., ‘Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers’, Applied physics letters, vol. 92, no. 4, p. 41118, 2008, doi: 10.1063/1.2839381.
[7]
S. Hövel et al., ‘Electrical detection of photoinduced spins both at room temperature and in remanence’, Applied physics letters, vol. 92, no. 24, Art. no. 242102, 2008, doi: 10.1063/1.2948856.
[8]
T. Schlauch, M. Li, M. Hofmann, A. Klehr, G. Erbert, and G. Tränkle, ‘High peak power femtosecond pulses from modelocked semiconductor laser in external cavity’, Electronics letters, vol. 44, no. 11, pp. 678–679, 2008, doi: 10.1049/el:20080953.
[9]
M. Hofmann and M. Oestreich, ‘Ferromagnet/semiconductor heterostrucutres and spininjection’, in Magnetic heterostructures, vol. 227, H. Zabel and S. D. Bader, Eds. Berlin: Springer, 2008, pp. 335–360. doi: 10.1007/978-3-540-73462-8_7.
[10]
M. Bülters, M. Breede, M. Hofmann, and D. Jäger, ‘Fast con­trol of an ex­ter­nal-ca­vi­ty laser diode using a ver­ti­cal pin mo­du­la­tor’, in EOS Annual Meeting 2008, 2008, Published.
[11]
B. Kunert et al., ‘Lasing of lattice-matched Ga(NAsP) quantum well heterostructures monolithically integrated on (001) Si substrate’, presented at the IEEE International Semiconductor Laser Conference, Sorrento, 2008, Published.
[12]
B. Kunert et al., ‘Monolithic integration of the novel GaP-based laser material Ga(NAsP) on (001) Si substrate without any dislocation formation’, presented at the E-MRS Spring Meeting, Straßburg, 2008, Published.
[13]
C. Lange et al., ‘Gain on si­li­con: mo­no­li­thic in­te­gra­ti­on of GaNAsP on Si’, presented at the International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors, Klink, 2008, Published.
[14]
S. Hövel et al., ‘Room-temperature spin-controlled optoelectronic devices’, in 2008 Conference on Lasers & Electro-Optics & Quantum Electronics and Laser Science Conference, San Jose, CA, 2008, pp. 1505–1506. doi: 10.1109/cleo.2008.4551689.
[15]
S. Hövel et al., ‘Room temperature electrical spin injection in remanence’, Applied physics letters, vol. 93, no. 2, Art. no. 021117, 2008, doi: 10.1063/1.2957469.
[16]
C. Brenner, S. Hoffmann, and M. Hofmann, ‘Interaction of semiconductor laser dynamics with THz radiation’, in Advances in Solid State Physics 47, Regensburg, 2008, vol. 47, pp. 179–190. doi: 10.1007/978-3-540-74325-5_15.
[17]
M. Breede and M. Hofmann, ‘Dreidimensionale Einzelschussholographie’, DE200610051868

2007

[1]
C. Kasseck, K. Lehmann, N. C. Gerhardt, and M. Hofmann, ‘Spectroscopic fourier domain optical coherence tomography’, in Optical coherence tomography and coherence techniques III, München, 2007, vol. 6627, pp. 1–9. doi: 10.1117/12.728416.
[2]
T. Gambichler et al., ‘Validation of optical coherence tomography in vivo using cryostat histology’, Physics in medicine and biology, vol. 52, no. 5, pp. N75–N85, 2007, doi: 10.1088/0031-9155/52/5/n01.
[3]
M. Scholz et al., ‘An optical evaluation of the phenomenon of red out in neuroendoscopic surgery: what is the physical background?’, Child‘s nervous system, vol. 23, no. 1, pp. 73–77, 2007, doi: 10.1007/s00381-006-0185-5.
[4]
S. Hoffmann and M. Hofmann, ‘Generation of Terahertz radiation with two color semiconductor lasers’, Laser & photonics reviews, vol. 1, no. 1, pp. 44–56, 2007, doi: 10.1002/lpor.200710004.
[5]
M. Bülters, M. Breede, M. Hofmann, and D. Jäger, ‘Vertical pin-modulator for controlling an external-cavity diode laser’, in Proceedings of 2007 International Students and Young Scientists Workshop on Photonics and Microsystems, Dresden, 2007, pp. 11–14. doi: 10.1109/stysw.2007.4559114.
[6]
M. Hofmann, ‘Diode laser based THz tech­no­lo­gy’, presented at the International Bunsen Discussion Meeting ‘Exploring THz Spectroscopy: From Technology to Applications’, Bad Honnef, 2007, Published.
[7]
C. Brenner et al., ‘Detection of terahertz radiation with diode lasers’, Electronics letters, vol. 43, no. 16, pp. 870–872, 2007, doi: 10.1049/el:20071401.
[8]
M. Mienkina et al., ‘Photoacoustic imaging of Fibrosarcoma using RGD-Cy 3 as a targeted contrast agent’, in IEEE Ultrasonics Symposium, 2007, New York City, NY, 2007, pp. 2409–2412. doi: 10.1109/ultsym.2007.606.
[9]
S. Hövel et al., ‘Spin-controlled LEDs and VCSELs’, Physica status solidi A, vol. 204, no. 2, pp. 500–507, 2007, doi: 10.1002/pssa.200673219.
[10]
M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, R. Höfling, and M. Hofmann, ‘External-cavity diode laser utilizing a micromirror device for spectral tuning’, in Optical measurement systems for industrial inspection V, München, 2007, vol. 6616, pp. 1–11. doi: 10.1117/12.726825.
[11]
C. Brenner et al., ‘Detection of THz radiation with semiconductor diode lasers’, Applied physics letters, vol. 91, no. 10, p. 101107, 2007, doi: 10.1063/1.2783172.
[12]
M. Breede, C. Kasseck, C. Brenner, N. C. Gerhardt, M. Hofmann, and R. Höfling, ‘Micromirror device controlled tunable diode laser’, Electronics letters, vol. 43, no. 8, pp. 456–457, 2007, doi: 10.1049/el:20073651.
[13]
M. Mienkina et al., ‘Evaluation eines kommerziellen Ultraschallgeräts für den Einsatz im photoakustischen Reflexionsmodus’, Biomedical engineering, vol. 52, no. S1, pp. G2-1, 2007.
[14]
C. Brenner, S. Hoffmann, and M. Hofmann, ‘Ge­ne­ra­ti­on and de­tec­tion of THz ra­dia­ti­on with diode la­sers’, in IET optoelectronics, 2007, vol. 2007,6.
[15]
S. Hoffmann, C. Brenner, M. Salhi, M. Koch, and M. R. Hofmann, ‘Semiconductor lasers for the generation and detection of THz radiation’, in 2007 joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Cardiff, 2007, pp. 850–851. doi: 10.1109/icimw.2007.4516761.

2006

[1]
G. Tränkle, G. Erbert, A. Klehr, and M. Hofmann, ‘Vorrichtung und Verfahren zur Erzeugung von kohärenter Terahertz-Strahlung’, 102006041728 [Online]. Available: https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100408&DB=&locale=en_EP&CC=DE&NR=102006041728B4&KC=B4&ND=9
[2]
S. Borck et al., ‘Lasing in optically pumped Ga(NAsP)/GaP heterostructures’, Applied physics letters, vol. 89, no. 3, p. 31102, 2006, doi: 10.1063/1.2221907.
[3]
N. T. Le, M. Breede, M. Hofmann, A. Klehr, and G. Ebert, ‘Ex­ter­nal ca­vi­ty hy­brid-mo­de-lo­cked se­mi­con­duc­tor laser with in­tra­ca­vi­ty spa­ti­al light mo­du­la­tor for pulse com­pres­si­on’, in Semiconductor and Integrated Optoelectronics (SIOE) Conference, 2006, Published.
[4]
S. Hoffmann, X. Luo, and M. Hofmann, ‘Bandwidth limitations of two-colour diode lasers for direct terahertz emission’, Electronics letters, vol. 42, no. 12, pp. 696–697, 2006, doi: 10.1049/el:20061246.
[5]
M. Breede, S. Hoffmann, and M. Hofmann, ‘Fourier transform external cavity lasers’, in Digest of the Fourth Joint Symposium on Opto- and Microelectronic Devices and Circuits 2006, Duisburg, 2006, pp. 125–126.
[6]
M. Mienkina et al., ‘Experimental characterization of ferucarbotran (Resovist ®) as a photoacoustic nanoparticle contrast agent’, in Proceedings, Vancouver, Kanada, 2006, pp. 393–396. doi: 10.1109/ultsym.2006.111.
[7]
M. Breede, M. Breede, M. R. Hofmann, M. Salvador, S. Köber, and K. Meerholz, ‘Zeitaufgelöste Holographie für biomedizinische Bildgebung’, DGaO-Proceedings, vol. 107, Art. no. P56, 2006, [Online]. Available: http://www.dgao-proceedings.de/download/107/107_p56.pdf
[8]
N. C. Gerhardt, S. Hövel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, ‘Enhancement of spin information with vertical cavity surface emitting lasers’, Electronics letters, vol. 42, no. 2, pp. 88–89, 2006, doi: 10.1049/el:20062890.
[9]
N. T. Le, M. Hofmann, A. Klehr, and G. Erbert, ‘Hybrid and passive mode-locking of a two-section laser diode in a Fourier transform external cavity’, IEE proceedings Optoelectronics, vol. 153, no. 6, pp. 312–315, 2006, doi: 10.1049/ip-opt:20060045.
[10]
S. Hövel, N. C. Gerhardt, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, ‘Spin dependent polarisation of optically pumped VCSELs’, in Special issue on semiconductor and integrated optoelectronics (SIOE), 2006, Published.
[11]
S. Hövel et al., ‘Spin-controlled vertical cavity surface-emitting lasers’, in Semiconductor lasers and laser dynamics II, Straßburg, 2006, vol. 6184, pp. 1–14. doi: 10.1117/12.662411.
[12]
N. C. Gerhardt et al., ‘Spin injection light-emitting diode with vertically magnetized ferromagnetic metal contacts’, Journal of applied physics, vol. 99, no. 7, Art. no. 073907, 2006, doi: 10.1063/1.2186376.
[13]
C. Brenner, N. T. Le, S. Hoffmann, and M. Hofmann, ‘Room temperature terahertz generation with semiconductor lasers’, in Millimeter-wave and terahertz photonics, Straßburg, 2006, vol. 6194, pp. 1–8. doi: 10.1117/12.661909.
[14]
C. Brenner, S. Hoffmann, M. Hofmann, M. A. Salhi, and M. Koch, ‘Room-temperature terahertz detection with diode lasers’, in Technical digest CD-ROM, Long Beach, Calif., 2006, pp. 1–2. doi: 10.1109/cleo.2006.4628239.
[15]
M. Hofmann, C. Brenner, S. Hoffmann, and N. T. Le, ‘Diode laser based THz radiation sources’, in 9th European Conference on NDT, Berlin, 2006, vol. 103.

2005

[1]
S. F. Fischer, M. Hofmann, and U. Kunze, ‘Spintronics: Spin injection, transport, and manipulation’, Superlattices and microstructures, vol. 37, no. 5, p. 305, 2005, doi: 10.1016/j.spmi.2005.03.002.
[2]
N. C. Gerhardt et al., ‘Elektrische Spininjektion über ferromagnetische Kontakte in LEDs im remanenten Zustand’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Berlin, 2005, vol. 40, no. 3. [Online]. Available: http://www.dpg-verhandlungen.de/year/2005/conference/berlin/part/hl/session/10/contribution/1
[3]
M. Hofmann et al., ‘Ballistic and 3-D holographic imaging of bone’, in Microgravity applications programme, vol. 1290, A. Wilson, Ed. Noordwijk: ESA Publ. Div., 2005, pp. 338–351.
[4]
S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, ‘Two-color diode lasers for generation of THz radiation’, Semiconductor science and technology, vol. 20, no. 7, pp. S205–S210, 2005, doi: 10.1088/0268-1242/20/7/010.
[5]
S. Hoffmann and M. Hofmann, ‘Terahertz generation with two color diode lasers’, in 2005 IEEE LEOS annual meeting conference proceedings (LEOS), Sydney, 2005, pp. 173–174. doi: 10.1109/leos.2005.1547934.
[6]
S. Hoffmann and M. Hofmann, ‘Terahertz-Strahlung entgeht nichts: kompakte Strahlungsquellen erschließen Marktpotenzial’, Rubin Sonderheft, vol. 15, no. 1, pp. 42–48, 2005, [Online]. Available: http://www.ruhr-uni-bochum.de/rubin/rbin1_05/pdf/beitrag6.pdf
[7]
S. Hövel, N. C. Gerhardt, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, ‘Spin controlled optically pumped vertical cavity surface emitting laser’, Electronics letters, vol. 41, no. 5, pp. 251–253, 2005, doi: 10.1049/el:20057675.
[8]
N. C. Gerhardt et al., ‘Spin-controlled LEDs and VCSELs’, in Physics and simulation of optoelectronic devices XIII, San José, Calif., 2005, vol. 5722, pp. 221–229. doi: 10.1117/12.590346.
[9]
N. C. Gerhardt et al., ‘Electron spin injection into GaAs from ferromagnetic contacts in remanence’, Applied physics letters, vol. 87, no. 3, Art. no. 032502, 2005, doi: 10.1063/1.1996843.

2004

[1]
N. C. Gerhardt and M. Hofmann, ‘Experimental analysis of the optical gain and linewidth enhancement factor of GaInNAs/GaAs lasers’, Journal of physics Condensed matter, vol. 16, no. 31, pp. S3095–S3106, 2004, doi: 10.1088/0953-8984/16/31/007.
[2]
N. C. Gerhardt, M. Hofmann, J. Hader, J. V. Moloney, S. W. Koch, and H. Riechert, ‘Linewidth enhancement factor and optical gain in (GaIn)(NAs)/GaAs lasers’, Applied physics letters, vol. 84, no. 1, pp. 1–3, 2004, doi: 10.1063/1.1638628.
[3]
S. Hövel, N. C. Gerhardt, M. R. Hofmann, J. Yang, D. Reuter, and A. Wieck, ‘Herstellung und Charakterisierung optisch gepumpter, oberflächenemittierender Halbleiterlaser’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, REgensburg, 2004, vol. 6. Reihe, Bd 39, no. 2. [Online]. Available: http://www.dpg-verhandlungen.de/year/2004/conference/regensburg/part/hl/session/12/contribution/1
[4]
S. Hoffmann et al., ‘Four-wave mixing and direct terahertz emission with two-color semiconductor lasers’, Applied physics letters, vol. 84, no. 18, pp. 3585–3587, 2004, doi: 10.1063/1.1737486.
[5]
M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, ‘Dynamics of two-color laser systems with spectrally filtered feedback’, Journal of the Optical Society of America B, vol. 21, no. 10, pp. 1758–1771, 2004, doi: 10.1364/josab.21.001758.
[6]
S. Hoffmann, M. Breede, and M. Hofmann, ‘Two-color semiconductor lasers’, in Physics and simulation of optoelectronic devices XII, San Jose, Calif., 2004, vol. 5349, pp. 218–227. doi: 10.1117/12.540320.
[7]
S. Hoffmann and M. Hofmann, ‘THz generation with two-color semiconductor laser’, in Conference digest of the 2004 joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics, Karlsruhe, 2004, pp. 81–82. doi: 10.1109/icimw.2004.1421963.
[8]
S. Hoffmann and M. Hofmann, ‘Two-color semiconductor lasers for generation of THz radiation’, presented at the European Semiconductor Laser Workshop, Särö, Schweden, 2004, Published.
[9]
M. Hofmann and N. C. Gerhardt, ‘Gain and emission dynamics of (GaIn)(NAs) lasers’, presented at the International Workshop on Metastable Compound Semiconductors and Heterostructure, Marburg, 2004, Published.

2003

[1]
S. A. Choulis, T. J. C. Hosea, S. Ghosh, P. J. Klar, and M. Hofmann, ‘Postgrowth nondestructive characterization of Dilute-Nitride VCSELs using electroreflectance spectroscopy’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 15, no. 8, pp. 1026–1028, 2003, doi: 10.1109/lpt.2003.815364.
[2]
N. C. Gerhardt and M. R. Hofmann, ‘Experimentelle Methoden zur Bestimmung der optischen Verstärkung von 1.3µm (GaIn)(NAs)/GaAs Halbleiterlasern’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Dresden, 2003, vol. 6. Reihe, Bd 38, no. 5. [Online]. Available: https://www.dpg-verhandlungen.de/year/2003/conference/dresden/part/hl/session/3/contribution/10
[3]
N. C. Gerhardt, M. Hofmann, and W. W. Rühle, ‘Optical spectroscopy of 1.3 μm (GaIn)(NAs)/GaAs lasers’, IEE proceedings Optoelectronics, vol. 150, no. 1, pp. 45–48, 2003, doi: 10.1049/ip-opt:20030035.
[4]
M. Hofmann and N. C. Gerhardt, ‘Gain and emission dynamics of dilute nitride quantum well lasers’, in Frontiers in Optics 2003, Tucson, Arizona, 2003, Published. doi: 10.1364/fio.2003.thn1.

2002

[1]
T. Kleine-Ostmann, P. Knobloch, R. Caspary, M. Hofmann, and M. Koch, ‘Dual-wavelength fibre laser’, Electronics letters, vol. 38, no. 7, pp. 309–310, 2002, doi: 10.1049/el:20020211.
[2]
M. Hofmann et al., ‘Emission dynamics and optical gain of 1.3 \mum (GaIn)(NAs)/GaAs Lasers’, IEEE journal of quantum electronics / Institute of Electrical and Electronics Engineers, vol. 38, no. 2, pp. 213–221, 2002, doi: 10.1109/3.980275.
[3]
P. J. Klar et al., ‘Interband transitions of quantum wells and device structures containing Ga(N, As) and (Ga, In) (N, As)’, Semiconductor science and technology, vol. 17, no. 8, pp. 830–842, 2002, doi: 10.1088/0268-1242/17/8/312.
[4]
P. Knobloch et al., ‘Medical THz imaging: an investigation of histo-pathological samples’, Physics in medicine and biology, vol. 47, no. 21, pp. 3875–3884, 2002, doi: 10.1088/0031-9155/47/21/327.
[5]
M. Breede, S. Hoffmann, and M. Hofmann, ‘Dual-wavelength external-cavity diode laser for CW-THz generation’, presented at the Nefertiti International Workshop, Duisburg, 2002, Published.
[6]
E. Finger et al., ‘Coulomb correlations and biexciton signatures in coherent excitation spectroscopy of semiconductor quantum wells’, Physica status solidi B, vol. 234, no. 1, pp. 424–434, 2002, doi: 10.1002/1521-3951(200211)234:1<424::aid-pssb424>3.0.co;2-v.
[7]
M. Breede et al., ‘Semiconductor laser with simultaneous tunable dual wavelength emission’, in Physics and simulation of optoelectronic devices X, San José, Calif., 2002, vol. 4646, pp. 439–446. doi: 10.1117/12.470546.
[8]
J. Hader et al., ‘Quantitative prediction of semiconductor laser characteristics based on low intensity photoluminescence measurements’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 14, no. 6, pp. 762–764, 2002, doi: 10.1109/lpt.2002.1003085.
[9]
M. Breede et al., ‘Fourier-transform external cavity lasers’, Optics communications, vol. 207, no. 1–6, pp. 261–271, 2002, doi: 10.1016/s0030-4018(02)01451-7.
[10]
T. Kleine-Ostmann et al., ‘Compact and cost-effective continuous wave THz imaging system’, in Technical digest, Long Beach, Calif., 2002, vol. 73, pp. 405–406. doi: 10.1109/cleo.2002.1034135.
[11]
E. Mennenga-Klopp et al., ‘The osteoblast mechano-receptor, microgravity perception and thermodynamics’, in Proceedings of Life in space for life on earth, Stockholm, 2002, vol. 501, pp. 255–256.
[12]
N. C. Gerhardt et al., ‘Influence of growth conditions on the optical gain of 1.3 /spl mu/m (GaIn)(NAs)/GaAs lasers’, in Conference digest, Garmisch-Partenkirchen, 2002, pp. 85–86. doi: 10.1109/islc.2002.1041130.
[13]
J. Hader et al., ‘Semiconductor quantum-well designer active materials’, Optics & photonics news, vol. 13, no. 2, p. 22, 2002, doi: 10.1364/opn.13.12.000022.
[14]
S. Hoffmann, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, and M. Koch, ‘Laserdioden-basierendes Terahertz-Imaging-System’, Photonik, vol. 34, no. 2, pp. 88–89, 2002.
[15]
J. Zimmermann, J. Struckmeier, M. Hofmann, and J.-P. Meyn, ‘Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal’, Optics letters, vol. 27, no. 8, pp. 604–606, 2002, doi: 10.1364/ol.27.000604.

2001

[1]
M. Hofmann et al., ‘Gain spectra of (GaIn)(NAs) laser diodes for the 1.3-mu m-wavelength regime’, Applied physics letters, vol. 78, no. 20, pp. 3009–3011, 2001, doi: 10.1063/1.1371963.
[2]
S. A. Choulis, T. J. C. Hosea, P. J. Klar, M. Hofmann, and W. Stolz, ‘Influence of varying N-environments on the properties of (GaIn)(NAs) vertical-cavity surface-emitting lasers’, Applied physics letters, vol. 79, no. 26, pp. 4277–4279, 2001, doi: 10.1063/1.1424464.
[3]
N. C. Gerhardt et al., ‘Optische Verstärkung von (GaIn)(NAs)/GaAs Halbleiterlasern’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Hamburg, 2001, vol. 6. Reihe, Bd 36, no. 1. [Online]. Available: http://www.dpg-verhandlungen.de/year/2001/conference/hamburg/part/hl/session/34/contribution/3
[4]
J. Struckmeier et al., ‘Real-time atomic force fluorescence microscopy on living cells’, in Hybrid and novel imaging and new optical instrumentation for biomedical applications, München, 2001, vol. 4434, pp. 142–149. doi: 10.1117/12.446671.
[5]
D. B. Jones et al., ‘Migrogravity sensing, mechano-sensing and osteoblasts’, in Proceedings, 2001, vol. 471, pp. 395–398.
[6]
M. Hofmann et al., ‘Gain of 1.3 μm (GaIn)(NAs)/GaAs lasers’, presented at the Workshop on novel gain materials, Würzburg, 2001, Published.
[7]
M. Hofmann et al., ‘Emission dynamics of (GaIn)(NAs)/GaAs lasers emitting at 1.3 μm’, in Physics and simulation of optoelectronic devices IX, San José, Calif., 2001, vol. 4283, pp. 256–266. doi: 10.1117/12.432573.
[8]
E. Finger et al., ‘Excitons and biexcitons as mesoscopic probes of disorder in semiconductor heterostructures’, in Summaries of papers presented at the Quantum Electronics and Laser Science Conference, Baltimore, Md., 2001, vol. 57, pp. 962232–1. doi: 10.1109/qels.2001.962232.
[9]
M. Hofmann et al., ‘Physics of 1.3µm (GaIn)(NAs)/GaAs semiconductor lasers’, in LEOS 2001, San Diego, CA, 2001, pp. 326–327. doi: 10.1109/leos.2001.969307.
[10]
T. Kleine-Ostmann et al., ‘Continuous-wave THz imaging’, Electronics letters, vol. 37, no. 24, pp. 1461–1462, 2001, doi: 10.1049/el:20011003.
[11]
J. Struckmeier et al., ‘Dynamic studies on living cells with an atomic force fluorescence microscope’, in Optical diagnostics of living cells IV, San Jose, Calif., 2001, vol. 4260, pp. 7–15. doi: 10.1117/12.426764.
[12]
M. Hofmann, ‘Physics of (GaIn)(NAs) lasers’, in Ultrafast nonlinear optics and semiconductor lasers, 2001, Published.
[13]
M. Oestreich et al., ‘Spintronics: Spin electronics and optoelectronics in semiconductors’, in Advances in Solid State Physics 41, vol. 41, B. Krämer, Ed. Berlin: Springer, 2001, pp. 173–186. doi: 10.1007/3-540-44946-9_15.

2000

[1]
J. Struckmeier, E. Mennenga-Klopp, M. Born, M. Hofmann, J. W. Tenbosch, and D. B. Jones, ‘Portable fluorescence photometer for monitoring free calcium’, Review of scientific instruments, vol. 71, no. 12, pp. 4531–4534, 2000, doi: 10.1063/1.1326926.
[2]
R. Szipocs, A. Kohazi-Kis, P. Apal, E. Finger, A. Euteneuer, and M. Hofmann, ‘Spectral filtering of femtosecond laser pulses by interference filters’, Applied physics B, vol. 70, no. 7, pp. 63–66, 2000, doi: 10.1007/s003400000366.
[3]
A. Wagner et al., ‘(GaIn)(NAs)/GaAs vertical-cavity surface-emitting laser with ultrabroad temperature operation range’, Applied physics letters, vol. 76, no. 3, pp. 271–272, 2000, doi: 10.1063/1.125744.
[4]
E. Finger, S. Kraft, A. Euteneuer, M. Hofmann, W. Stolz, and W. W. Rühle, ‘Coherent excitation spectroscopy of disordered quantum-well structures’, Physica status solidi B, vol. 221, no. 1, pp. 373–378, 2000, doi: 10.1002/1521-3951(200009)221:1<373::aid-pssb373>3.0.co;2-m.
[5]
E. Finger et al., ‘Coherent coupling in inhomogeneously broadened exciton ensembles’, in Conference digest, Nizza, 2000, pp. 908097–1. doi: 10.1109/iqec.2000.908097.
[6]
A. Wagner et al., ‘Emission dynamics and gain of (GaIn)(NAs)/GaAs lasers’, Physica status solidi B, vol. 221, no. 1, pp. 567–569, 2000, doi: 10.1002/1521-3951(200009)221:1<567::aid-pssb567>3.0.co;2-2.
[7]
R. Szipocs, A. Euteneuer, E. Finger, and M. Hofmann, ‘Multicolor, mode-locked Ti: sapphire laser with zero pulse jitter’, Laser physics, vol. 10, no. 1, pp. 454–457, 2000.
[8]
M. R. Hofmann et al., ‘Design und Optimierung oberflächenemittierender (GaIn)(NAs)/GaAs Laser’, in Verhandlungen der Deutschen Physikalischen Gesellschaft, Regensburg, 2000, vol. 6. Reihe, Bd 35, no. 4. [Online]. Available: https://www.dpg-verhandlungen.de/year/2000/conference/regensburg/part/hl/session/29/contribution/6
[9]
J. Struckmeier, J. W. Tenbosch, E. Mennenga-Klopp, M. Born, M. Hofmann, and C. Jördens, ‘New portable time-resolved photometer for monitoring the calcium dynamics of osteoblasts under mechanical and zero-gravity stimulation’, in Optical diagnostics of living cells III, San Jose, Calif., 2000, vol. 3921, pp. 114–123. doi: 10.1117/12.384203.
[10]
A. Euteneuer et al., ‘Investigation of disordered semiconductor quantum-wells by coherent excitation spectroscopy’, Physica status solidi A, vol. 178, no. 1, pp. 183–188, 2000, doi: 10.1002/1521-396x(200003)178:1<183::aid-pssa183>3.0.co;2-q.
[11]
M. Hofmann et al., ‘Normal-mode linewidths in a semiconductor microcavity with various cavity qualities’, Physica status solidi A, vol. 178, no. 1, pp. 179–181, 2000, doi: 10.1002/1521-396x(200003)178:1<179::aid-pssa179>3.0.co;2-6.
[12]
S. Weiser et al., ‘Analysis of disorder-induced dephasing’, in Conference digest, Nizza, 2000, pp. 908038–1. doi: 10.1109/iqec.2000.908038.
[13]
M. Hofmann, ‘(GaIn) (NAs)/GaAs vertical-cavity surface-emitting lasers with high performance’, in Advances in Solid State Physics 40, Regensburg, 2000, vol. 40, pp. 599–610. doi: 10.1007/bfb0108382.
[14]
A. Wagner et al., ‘Emission dynamics of (GaIn) (NAs) vertical-cavity surface-emitting lasers’, in Technical digest / Conference on Lasers and Electro-Optics (CLEO 2000), San Francisco, Calif., 2000, vol. 39. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=CLEO-2000-CTuL2
[15]
N. C. Gerhardt et al., ‘Emission dynamics and gain of (GaIn)(NAs)/GaAs lasers’, presented at the Microcavity and Photonics Workshop, Ascona, 2000, Published.
[16]
A. Wagner et al., ‘Gain and emission dynamics of (GaIn)(NAs)/GaAs semiconductor lasers’, presented at the COST International Workshop 266/267 ‘Optical signal processing in Photonics Networks’, Berlin, 2000, Published.
[17]
A. Wagner et al., ‘Emission dynamics of (GaIn)(NAs)/GaAs VCSELs’, presented at the European VCSEL workshop, Brüssel, 2000, Published.
[18]
S. Weiser et al., ‘Disorder-induced dephasing in semiconductors’, Physical review B, vol. 61, no. 19, pp. 13088–13098, 2000, doi: 10.1103/physrevb.61.13088.

1999

[1]
A. Euteneuer, H. Gießen, and M. Hofmann, ‘Strahlungs-Meßvorrichtung’, 19926812 [Online]. Available: https://worldwide.espacenet.com/publicationDetails/biblio?DB=&ND=2&locale=&FT=D&date=20030815&CC=DE&NR=19926812A1&KC=A1#
[2]
A. Euteneuer, M. Hofmann, B. Smarsly, and J. Struckmeier, ‘Elektrooptisch gesteuerter Laserresonator ohne mechanisch bewegliche Teile, insbesondere für spektral abstimmbare Laser und für räumlich steuerbaren Ausgangsstrahl, sowie Verwendungen’, 19909497 [Online]. Available: https://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=19909497C1&KC=C1&FT=D#
[3]
C. Ellmers et al., ‘Ultrafast (GaIn)(NAs)/GaAs vertical-cavity surface-emitting laser for the 1.3 μm wavelength regime’, Applied physics letters, vol. 74, no. 16, pp. 2271–2273, 1999, doi: 10.1063/1.123821.
[4]
A. Euteneuer et al., ‘Coherent excitation spectroscopy on inhomogeneous exciton ensembles’, Physical review letters, vol. 83, no. 10, pp. 2073–2076, 1999, doi: 10.1103/physrevlett.83.2073.
[5]
A. Euteneuer et al., ‘Distribution of exciton binding-energies in disordered semiconductor quantum-wells’, in Technical digest, Baltimore, Md., 1999, pp. 807538–1. doi: 10.1109/qels.1999.807538.
[6]
M. Hofmann, J. Struckmeier, M. Breede, B. Smarsly, and A. Euteneuer, ‘ETECAL - Eine neue Generation durchstimmbarer Diodenlaser’, LaserOpto, vol. 31, no. 42, 1999.
[7]
M. Hofmann, J. Struckmeier, D. Jones, and T. Pohl, ‘Diodenlaser für medizinische Forschung und Meßtechnik’, presented at the Hannover-Messe, Hannover, 1999, Published.
[8]
C. Ellmers, S. Leu, M. Hofmann, D. Karaiskaj, W. W. Rühle, and W. Stolz, ‘Ultrafast dynamic response of strain-compensated (GaIn)As/Ga(PAs) microcavity lasers’, in Vertical-cavity surface-emitting lasers III, San Jose, Calif., 1999, vol. 3627, pp. 70–76. doi: 10.1117/12.347088.
[9]
C. Ellmers, M. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, and W. W. Rühle, ‘Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface-emitting lasers with optimized dynamics’, Applied physics letters, vol. 74, no. 10, pp. 1367–1369, 1999, doi: 10.1063/1.123552.
[10]
M. Hofmann, J. Zimmermann, M. Oestreich, and W. W. Rühle, ‘Ultrafast physics in Nitrides’, Materials science & engineering B, vol. 59, no. 1–3, pp. 141–146, 1999, doi: 10.1016/s0921-5107(98)00335-3.
[11]
D. Hägele et al., ‘Energy loss rate of excitons in GaN’, Physica B, vol. 272, no. 1–4, pp. 409–411, 1999, doi: 10.1016/s0921-4526(99)00387-7.
[12]
M. Hofmann, ‘Gain and emission dynamics of semiconductor lasers’, Recent research developments in applied physics, vol. 2, no. 1, pp. 269–290, 1999.
[13]
J. Struckmeier, B. Smarsly, A. Euteneuer, and M. Hofmann, ‘Electronically tunable external cavity laserdiode’, presented at the Laser 99, München, 1999, Published.
[14]
M. Hofmann, ‘High-precision gain measurements on quantum-well laser diodes’, presented at the Symposium on Optical Gain and Recombination in Semiconductors, Grasmere, 1999, Published.
[15]
A. Euteneuer, H. Gießen, and M. Hofmann, ‘Miniature autocorrelator’, presented at the Laser 99, München, 1999, Published.
[16]
M. Hofmann, ‘Elektronisch abstimmbarer Diodenlaser’, Sensor-Report, vol. 14, no. 31, 1999.
[17]
J. Struckmeier et al., ‘Electronically tunable external-cavity laser diode’, Optics letters, vol. 24, no. 22, pp. 1573–1574, 1999, doi: 10.1364/ol.24.001573.
[18]
D. Hägele et al., ‘Cooling dynamics of excitons in GaN’, Physical review B, vol. 59, no. 12, pp. R7797–R7800, 1999, doi: 10.1103/physrevb.59.r7797.
[19]
D. Karaiskaj et al., ‘Linewidths in a semiconductor microcavity with variable strength of normal-mode coupling’, Physical review B, vol. 59, no. 21, pp. 13525–13527, 1999, doi: 10.1103/physrevb.59.13525.
[20]
R. Szipocs, A. Euteneuer, E. Finger, and M. R. Hofmann, ‘Multicolor, mode-locked Ti : Sapphire laser with zero pulse jitter’, presented at the International Laser Physics Workshop, Budapest, 1999, Published.

1998

[1]
C. Ellmers, S. Leu, R. Rettig, M. Hofmann, W. W. Rühle, and W. Stolz, ‘GaAs-based VCSEL-structures with strain-compensated (GaIn)As/Ga(PAs)-MQWH active regions grown by using TBAs and TBP’, Journal of crystal growth, vol. 195, no. 1–4, pp. 630–636, 1998, doi: 10.1016/s0022-0248(98)00708-8.
[2]
C. Ellmers et al., ‘Gain spectra of an (InGa)As single quantum well laser diode’, Physica status solidi B, vol. 206, no. 1, pp. 407–412, 1998, doi: 10.1002/(sici)1521-3951(199803)206:1<407::aid-pssb407>3.0.co;2-x.
[3]
C. Ellmers et al., ‘Measurements and calculation of gain spectra for (GaIn)As/(AlGa)As single quantum well lasers’, Applied physics letters, vol. 72, no. 13, pp. 1647–1649, 1998, doi: 10.1063/1.121140.
[4]
M. Hofmann, ‘Gain dynamics of semiconductor lasers’, in Physics and simulation of optoelectronic devices VI, San José, Calif., 1998, vol. 3283, pp. 109–120.
[5]
C. Ellmers et al., ‘Picosecond pulse emission of optically pumped vertical cavity surface emitting lasers: Influence of carrier relaxation’, presented at the WE-Heraeus-Seminar - Italian-German International Symposium on Microcavities, Loveno di Menaggio, 1998, Published.
[6]
C. Ellmer et al., ‘Emission dynamics of a (GaIn)(NAs) vertical-cavity surface-emitting laser’, presented at the Conference on Lasers and Electro-Optics, Glasgow, 1998, Published.
[7]
S. Leu, R. Rettig, C. Ellmers, M. Hofmann, and W. W. Rühle, ‘MOVPE Growth of strain-compensated GaAs-based VCSEL-structures’, presented at the WE-Heraeus-Seminar - Italian-German International Symposium on Microcavities, Loveno di Menaggio, 1998, Published.
[8]
M. Hofmann et al., ‘Pump geometry for resonant and quasi-resonant excitation of microactivity lasers’, Optics letters, vol. 23, no. 11, pp. 849–851, 1998, doi: 10.1364/ol.23.000849.
[9]
M. Hofmann, R. Zimmermann, M. Oestreich, and W. W. Rühle, ‘Ultrafast physics in Nitrides’, presented at the E-MRS/ICAM Meeting, Straßburg, 1998, Published.

1997

[1]
R. Zimmermann et al., ‘Transient four-wave-mixing spectroscopy on Gallium Nitride Energy splittings of intrinsic excitonic resonances’, Physical review B, vol. 56, no. 20, pp. 12722–12724, 1997, doi: 10.1103/physrevb.56.r12722.
[2]
A. Euteneuer et al., ‘Biexcitonic binding energies in the transition regime from three- to two-dimensional semiconductors’, Physical review B, vol. 56, no. 16, pp. 10028–10031, 1997, doi: 10.1103/physrevb.56.r10028.
[3]
M. Hilpert et al., ‘Influence of carrier relaxation on the dynamics of stimulated emission in microcavity lasers’, Applied physics letters, vol. 71, no. 26, pp. 3761–3763, 1997, doi: 10.1063/1.120498.
[4]
S. Bischoff et al., ‘Monolithic colliding pulse mode-locked semiconductor lasers’, Journal of the European Optical Society B, vol. 9, no. 5, pp. 655–674, 1997, doi: 10.1088/1355-5111/9/5/002.
[5]
M. Hofmann, S. D. Brorson, J. Mork, P. Skovgaard, J. McInerney, and A. Mecozzi, ‘Subpicosecond heterodyne four-wave mixing experiments on InGaAsP semiconductor laser amplifiers’, Optics communications, vol. 139, no. 1–3, pp. 117–124, 1997, doi: 10.1016/s0030-4018(97)00112-0.
[6]
M. Hilpert et al., ‘Influence of carrier cooling on the emission dynamics of semiconductor microcavity lasers’, Physica status solidi B, vol. 204, no. 1, pp. 548–551, 1997, doi: 10.1002/1521-3951(199711)204:1<548::aid-pssb548>3.0.co;2-b.
[7]
A. Euteneuer et al., ‘Confinement dependence of biexcitonic binding energies in semiconductor quantum wells’, Physica status solidi A, vol. 164, no. 1, pp. 253–258, 1997, doi: 10.1002/1521-396x(199711)164:1<253::aid-pssa253>3.0.co;2-0.
[8]
M. Hofmann et al., ‘Chirp of monolithic colliding pulse mode-locked diode lasers’, Applied physics letters, vol. 70, no. 19, pp. 2514–2516, 1997, doi: 10.1063/1.119086.
[9]
J. Zimmermann et al., ‘Quantum beat spectroscopy on excitons in GaN’, Materials science & engineering B, vol. 50, no. 1–3, pp. 205–207, 1997, doi: 10.1016/s0921-5107(97)00182-7.
[10]
P. Miltényi, M. Koch, M. Hofmann, H. Jung, and W. E. Elsässer, ‘Spectrally and temporally resolved gain dynamics in mode locked semiconductor quantum well lasers’, Applied physics letters, vol. 70, no. 12, pp. 1506–1508, 1997, doi: 10.1063/1.118363.
[11]
E. J. Mayer et al., ‘Ultrabroadband chirped mirrors for femtosecond lasers’, in CLEO ’97, Baltimore, Md., 1997, vol. 11, pp. 133–134. doi: 10.1109/cleo.1997.602355.
[12]
M. Hofmann, K. Fröjdh, S. D. Brorson, and J. Mork, ‘Temporal and spectral dynamics in multiquantum well semiconductor saturable absorbers’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 9, no. 5, pp. 622–624, 1997, doi: 10.1109/68.588157.
[13]
R. Zimmermann et al., ‘Transient four wave mixing experiments on GaN’, MRS internet journal of nitride semiconductor research, vol. 2, no. 23–26, p. 24, 1997, doi: 10.1557/s1092578300001502.
[14]
R. Zimmermann et al., ‘Quantum beat spectroscopy on excitons in GaN’, in III-V nitrides, semiconductors, and ceramics, Straßburg, 1997, vol. 74, pp. 205–207.

1996

[1]
A. Mecozzi, J. Mork, and M. Hofmann, ‘Transient four-wave mixing with collinear pump and probe’, Optics letters, vol. 21, no. 14, pp. 1017–1019, 1996, doi: 10.1364/ol.21.001017.
[2]
T. Franck, M. Hofmann, L. Prip, S. Bischoff, S. Brorson, and J. Mork, ‘Pulse shape characterisation of colliding pulse modelocked laser diodes’, in CLEO ’96, Anaheim, Calif., 1996, vol. 9, pp. 131–132.
[3]
S. Bischoff et al., ‘Modelling and characterization of colliding pulse modelocked (CPM) quantum well lasers’, in Physics and simulation of optoelectronic devices IV, San José, Calif., 1996, vol. 2693, pp. 477–488.
[4]
M. Hofmann, S. Brorson, J. Mork, and A. Mecozzi, ‘Time-resolved four-wave mixing in semiconductor laser amplifiers’, in QELS ’96, Anaheim, Calif., 1996, vol. 9, pp. 156–157.
[5]
A. Girndt, A. Knorr, M. Hofmann, and S. W. Koch, ‘Theory of coherent phenomena in pump: probe excitation of semiconductor amplifiers’, Journal of applied physics, vol. 78, no. 5, pp. 2946–2954, 1996, doi: 10.1063/1.360040.
[6]
M. Hofmann, S. D. Brorson, J. Mork, and A. Mecozzi, ‘Time resolved four-wave mixing technique to measure the ultrafast coherent dynamics in semiconductor optical amplifiers’, Applied physics letters, vol. 68, no. 23, pp. 3236–3238, 1996, doi: 10.1063/1.116559.

1995

[1]
P. Miltényi et al., ‘Long-term stable mode locking of a visible diode laser with phase-conjugate feedback’, Optics letters, vol. 20, no. 7, pp. 734–736, 1995, doi: 10.1364/ol.20.000734.
[2]
A. Girndt, A. Knorr, M. Hofmann, and S. W. Koch, ‘Theoretical analysis of ultrafast pump: probe experiments in semiconductor amplifiers’, Applied physics letters, vol. 66, no. 5, pp. 550–552, 1995, doi: 10.1063/1.114009.
[3]
M. O. Ziegler, M. Hofmann, J. Sacher, W. E. Elsässer, and E. O. Göbel, ‘Phase and amplitude stabitlity of an external cavity laser diode modelocked by optoelectronic feedback’, Electronics letters, vol. 31, no. 5, pp. 371–373, 1995, doi: 10.1049/el:19950234.

1994

[1]
M. Hofmann et al., ‘Picosecond gain dynamics of an actively mode-locked external-cavity laser diode’, IEEE journal of quantum electronics / Institute of Electrical and Electronics Engineers, vol. 30, no. 8, pp. 1756–1762, 1994, doi: 10.1109/3.301639.
[2]
M. Hofmann et al., ‘Temporal and spectral gain dynamics in an actively modelocked semiconductor laser’, IEE proceedings Optoelectronics, vol. 141, no. 2, pp. 127–132, 1994, doi: 10.1049/ip-opt:19949993.
[3]
M. Hofmann, W. Weise, W. E. Elsässer, and E. O. Göbel, ‘High spectral tuning range of a modelocked InGaAs/InGaAsP MQW laser diode due to light hole gain contribution’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 6, no. 11, pp. 1306–1308, 1994, doi: 10.1109/68.334821.
[4]
M. Hofmann et al., ‘Picosecond gain dynamics of an actively modelocked external cavity laser diode’, in Physics and simulation of optoelectronic devices II, Los Angeles, 1994, vol. 2146, pp. 256–265.
[5]
M. Hofmann, Verstärkungsdynamik modengekoppelter Laserdioden. Göttingen: Cuvillier, 1994.
[6]
M. Hofmann, M. Koch, J. Feldmann, W. Elsäßer, and E. O. Göbel, ‘Femtosecond pump-probe experiments on semiconductor optical amplifiers’, presented at the International workshop on pattern singularities and collapse: Applications to semiconductor lasers and critical focusing of ultrashort pulses, Cork, 1994, Published.

1993

[1]
M. Hofmann et al., ‘Modelocking of interferometric Y-Lasers in an external cavity’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 5, no. 10, pp. 1135–1137, 1993, doi: 10.1109/68.248405.
[2]
M. Hofmann, M. Koch, J. Feldmann, W. Elsäßer, and E. O. Göbel, ‘Picosecond gain dynamics in an actively modelocked external cavity laser diode’, presented at the Semiconductor and integrated optoelectronics conference, Cardiff, 1993, Published.

1992

[1]
W. E. Elsässer et al., ‘Picosecond pulse generation in a GaAs/ GaAlAs single: quantum well laser at the first and second subband transition’, IEEE photonics technology letters / Institute of Electrical and Electronics Engineers, vol. 4, no. 9, pp. 966–969, 1992, doi: 10.1109/68.157117.
[2]
M. Hofmann, M. Ziegler, J. Sacher, Elsäßer, and E. O. Göbel, ‘Mode-locking of semiconductor lasers through optoelectronic feedback (OEFB)’, presented at the European Conference on Optical Communication, Berlin, 1992, Published.

1991

[1]
T. Wicht et al., ‘Output characteristics of RF-modulated laser diodes’, IEEE journal of selected topics in quantum electronics / Institute of Electrical and Electronics Engineers, vol. 27, no. 6, pp. 1682–1687, 1991, doi: 10.1109/3.89993.
[2]
W. Elsäßer, J. Sacher, F. Hackenbuchner, M. Hofmann, and E. O. Göbel, ‘Mode-locking of a GaAs/GaAlAs single quantum well laser at the second quantized state’, presented at the European Quantum Electronics Conference, Edinburgh, 1991, Published.

To top

To Top